MATICA SRPSKA
ОДЕЉЕЊЕ ЗА ПРИРОДНЕ НАУКЕ

ЗБОРНИК
МАТИЦЕ СРПСКЕ ЗА ПРИРОДНЕ НАУКЕ

MATICA SRPSKA
DEPARTMENT OF NATURAL SCIENCES
PROCEEDINGS FOR NATURAL SCIENCES

Покренут 1951 / First published in 1951.

Published as Научни зборник, серија природних наука until the tenth issue (1955), as the Series for Natural Science from the eleventh issue (1956) — Зборник за природне науке, and under its present title since the sixty-sixth issue (1984)

Главни уредници / Editors-in-Chief

123

Уредништво / Editorial Board
S. GAJIN
V. JANJIĆ
V. JOVIĆ
D. KAPOR
R. KASTORI
L. LEPŠANOVIĆ
I. MAKSIMOVIĆ
V. MARIĆ
S. ĆURČIĆ

Consulting Editors
A. ATANASSOV, Bulgaria
P. HOCKING, Australia
A. RODZKIN, Belarus
M. SIMMONDS, UK
S. STOJILJKOVIĆ, USA
G. SCHILING, Germany
GY. VÁRALLYAY, Hungary

Articals are available in full-text at the web site of Matica Srpska and in the following data bases: Serbian Citation Index, EBSCO Academic Search Complet, abstract level at Agris (FAO), CAB Abstracts, CABI Full-Text and Thomson Reuters Master Journal List.

Главни и одговорни уредник / Editor-in-Chief
RUDOLF KASTORI
CONTENTS
САДРЖАЈ

ARTICLES AND TREATISES
ЧЛАНЦИ И ПРИЛОЗИ

Marija M. Škrinjar, Vesna V. Janković, Slavica M. Vesković, Moračanin, Jelena B. Vukojević, Xerophilic moulds isolated from spices used in meat industry as potential producers of mycotoxins – Ксерофилне плесни izоловане из зачина који се користе у индустрији меса као потенцијални продуценти микотоксина ... 7

Nada A. Milošević, Jelena B. Marinković, Branislava Tintor, Mitigating abiotic stress in crop plants by microorganisms – Утицај микроорганизама на ублажавање последица абиотичког стреса код пољопривредних култура ... 17

Dragana R. Stamenov, Mirjana N. Jarak, Simonida S. Đurić, Timea I. Hajnal Jafari, Dragana D. Bjelić, Microbiological transformations of phosphorus and sulphur compounds in acid soils – Микробиолошке трансформације једињења фосфора и сумпора у киселим земљиштима ... 27

Maja A. Karaman, Milana S. Novaković, Dragiša Savić, Milan N. Matavulj, Preliminary checklist of Myxomycota and Ascomycota from Fruska Gora Mountain – Прелиминарна листа гљива Фрушке горе – Раздели Мyxomycota и Ascomycota ... 37

Jelena D. Hrubik, Sonja N. Kazišarević, Branka D. Glišić, Emilija D. Jovin, Neda M. Mimica-Dukić, Radmila Z. Kovačević, Myrtus communis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells – Цитотоксичност Myrtus communis и Eucalyptus camal-
dulensis на ћелијама канцера дојке .. 65

Rudolf R. Kastori, Ivana V. Maksimović, Ottó T. Dorogházi, Marina I. Putnik-Delić, Effect of lead contamination of maize seed on its biological properties – Утицај контаминације семена кукуруза оловом на његова биолошка својства .. 75
Čedomir N. Radenović, Milomir R. Filipović, Milica M. Radosavljević, Života V. Jovanović, Željko S. Kaitović, Miodrag M. Tolimir, Nikola M. Grčić, Miloš S. Crevar, Milan D. Stevanović, Genetic, chemical and physical predispositions of new maize inbred lines and hybrids with efficient photosynthesis – Генетичке и хемијско-физичке предиспозиције нових линија и хибрида кукуруза са ефикасном fotosинтезом ... 83
Čedomir N. Radenović, Miloš V. Beljanski, Georgij V. Maksimov, Dragomir R. Stanisavljev, Variable mechanisms of action of lithium during generating of membrane potential oscillations across the excitable membrane of the Nittela cell – Променљиви механизми деловања литијума при настајању осцилација мембранског потенцијала на побуђеној ћелијској мембрани Nittelle ... 101
Laslo Nađ (László Nagy), Investigation of sand in piping – Проучавање песка у одливању ... 115
Instruction to Authors – Упутство ауторима .. 129
Marija M. Škrinjar, Vesna V. Janković, Slavica M. Vesković Moračanin, Jelena B. Vukojević

1 Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
2 Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia
3 Institute of Botany, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia

XEROPHILIC MOULDS ISOLATED FROM SPICES USED IN MEAT INDUSTRY AS POTENTIAL PRODUCERS OF MYCOTOXINS

ABSTRACT: Spices are often considered as one of the possible sources of meat products contamination with toxigenic moulds. Genera Aspergillus, Eurotium and Penicillium are most frequent xerophilic storage moulds that contaminate spices. Because spices are possible source of contamination of the final product and potential producers of mycotoxins, it is necessary to estimate the degree of moulds contamination and their ability to produce secondary metabolites – mycotoxins.

Mycological analysis was carried out on five samples of oregano and clove respectively. Presence of moulds was determined by parallel usage of Sabouraud maltose agar (SMA) and the medium that stimulates the growth of xerophilic species: malt – yeast extract agar with 50% of glucose (MY50G).

Isolated moulds were classified into five genera (Aspergillus, Alternaria, Cladosporium, Rhizopus and Penicillium) and 9 species.

Mycotoxins determination was carried out using ELISA test (commercial kits Tecna, Italy) for the presence of aflatoxin B1, ochratoxin, A and zearalenone.

The results showed the presence of aflatoxin B1, ochratoxin A, and zearalenone in almost all samples, except one sample of oregano and one clove sample.

We can conclude that it is necessary to introduce mandatory mycotoxins determination (aflatoxin B1, ochratoxin A), in raw material for meat industry, especially spices. These secondary metabolites are known as extremely toxic and are classified in group I of human carcinogens.

KEY WORDS: ELISA, moulds, mycotoxins, selective medium, spices

INTRODUCTION

Spices and herbs are valued for their distinctive flavors, colors, and aromas and are among the most versatile and widely used ingredients in food preparation.

* Corresponding author: e-mail: skrinjarm@uns.ac.rs
and processing all over the world. As is the case with many other agricultural products, spices and herbs may be exposed to a wide range of microbial contamination during pre – and post – harvest (Hashem and Alamri, 2010). Such contamination may occur during processing, storage, distribution, sale and/or use (Mcke, 1995).

Modern meat industry cannot be imagined without utilization of spices. However, spices, together with all other dried material of herbal origin, are never sterile. In most cases, they contain sporogenic bacteria and moulds. These microorganisms can cause spoilage of the product by their metabolic activity, consequently resulting in significant economic losses.

Presence of moulds in spices and later in sausages or other meat products can result in production of toxic metabolites – mycotoxins, independently of contamination degree (Kocić-Tanackov et al., 2007). In addition, changes in odor and other undesirable sensory changes can also occur in contaminated products. Mycotoxins are fungal secondary metabolites identified in many agricultural products screened for toxicogenic moulds (Cleverton and Ljunggren, 1985; CAST, 2003). Mycotoxins have been reported to be carcinogenic, teratogenic, tremorgenic, hemorrhagic, and dermatitic to a wide range of organisms, and known to cause hepatic carcinoma in man in humans and animals (Frisvad et al., 2005; Zinedine et al., 2006).

It has been reported that principal contaminants of spices are xerophilic moulds from the genera Eurotium, Aspergillus, and Penicillium (Dimić and Škrinjar, 1995; Dimić et al., 2000; Romagnoli et al., 2007). Production of toxins primarily depends on genetic factors; however, environmental conditions at the site of moulds growth (temperature, water activity, matrix composition, moisture content, pH of the medium, contamination and physical destruction of the substrate, antifungal properties and other factors) are considered highly significant.

The authors Škrinjar and Boldocky (1994) determined the presence of 8 moulds species isolated from mixtures of spices intended for meat industry; Aspergillus species were dominant, while garlic had the highest degree of molds contamination, but only with two species (Eutotium herbariorum and Penicillium granulatum).

Dimić et al. (2000) established that about 46% of spices mixtures, 29% of black pepper and 25% of paprika was contaminated by moulds. According to this author, main sources of contamination were Eutotium herbariorum, Aspergillus versicolor, A. sydowii and A. flavus, Penicillium aurantiogriseum and P. chrysogenum.

The same authors report that among 45 identified species responsible for fungal contamination, 55% was potentially toxigenic. Two samples of spices mixture contained high concentrations of ochratoxin A (32.00µg/kg in mixture of spices for frankfurters production), as well as zearalenone in three samples of black pepper (192.00µg/kg – 288.00µg/kg).

Considering that spices are possible source of contamination of final product, the aim of this paper was to determine contamination degree of final product with xerophilic moulds by using various selective cultivating media,
resulting in recommendation of most suitable medium, and to determine ability of isolated moulds to produce mycotoxins using semiquantitative immunoassays.

2. MATERIALS AND METHODS

2.1. Sampling
Samples of spices used in meat industry (oregano and clove) were investigated. Presence and enumeration of moulds, their determination and investigation of ability to produce mycotoxins were carried out.

2.2. Mycological procedures
2.2.1. Mould isolation
Enumeration of moulds in samples of spices (cfu/g) was carried out using dilution technique by Koch (Harrigan, 1998). The enumeration of moulds was performed using 16-cm Petri dishes on both Sabouraud malt agar (SMA, Merck) with the addition of antibiotic (1ml of chloramphenicol, Sigma/100ml of medium) and the medium that stimulates the growth of xerophilic species – malt yeast extract agar with 50% of glucose (MY50G). SMA composition is as follows: peptone 10 g, D(+)glucose 40 g, agar-agar 15 g; distilled water ad 1000 mL. pH after sterilization should be 5.6±0.2.

The composition of the other selective medium for detection of xerophilic moulds species, MY50G, is: malt extract, Difco 0186, 10 g; yeast extract, Difco 0127, 2.5 g; glucose, 50 g; distilled water, 500 ml; agar 10 g. pH value after sterilization should be 5.7. The inoculated agar media were incubated for 7 days in dark at 25±1 °C and inspected for genus identification using macro and microscopic morphological characteristics.

2.2.2. Mould identification
Moulds determination included recultivation of grown colonies on media used for determination (Czapek and malt agar). Macroscopic and microscopic morphological characters were used in the identification process. Colony color, texture and diameter, the production of diffusible pigments, and exudates were among macroscopic features, while conidia and conidiophore arrangements were the microscopic.

All the isolates were identified according to Samson and van Rieën-Hoekstra (1988), Samson and Pitt (2000), Samson et al. (2004) and Pitt and Hocking (1997).

2.2.3. Mycotoxicological investigations
Presence of aflatoxin B1, ochratoxin A, and zearalenone was determined simultaneously with enumeration and identification of moulds from oregano and clove samples. Mycotoxins were determined using semiquantitative test – ELISA. Commercial kits Tecna, Italy were used. Sample preparation was carried out according to internal protocol for each mycotoxin. The results were calculated based on calibration curve obtained during measurements. The results were expressed as μg/kg⁻¹.
3. RESULTS AND DISCUSSION

Table 1 shows the results of mycological analyses – enumeration of molds in samples of oregano and clove using different selective media, SMA, and MY50G. These media have different composition of added sugars and water activity (aw). SMA contains maltose and aw is in the range 0.98-0.99, while MY50G contains glucose and aw is 0.89.

The media that are traditionally used in isolation and enumeration of moulds (SMA, potato dextrose agar, Czapek agar, and other) have high water activity (about 0.99). Numerous xerophilic moulds, which are carriers of spieces contamination, have optional aw below 0.90. Collaborative investigations with SMA and MY50G provide more accurate perspective on micropopulation and contamination of examined samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Oregano (TVC)</th>
<th>Clove (TVC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMA</td>
<td>MY 50 G</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>1.6 x 10^2</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1.2 x 10^3</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>4.5 x 10^2</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>1.0 x 10^2</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1.0 x 10^3</td>
</tr>
</tbody>
</table>

All investigated samples showed presence of moulds on both SMA and MY50G media (Table 1). However, significant differences were observed in enumeration of moulds grown on SMA and MY50G. Number of colonies was significantly higher on MY50G (from 1.0 x 10^2 to 2.4 x 10^3 cfu/g), compared to SMA (from 10 to 40 cfu/g).

The results of clove analysis showed somewhat different aspect (Table 1). The growth was determined in all samples cultivated on SMA, while no growth was observed in four samples cultivated on MY50G. Total count of moulds was between 2.0 x 10^2 (sample 4) and 2.4 x 10^3 (sample 1), while only one sample (number 1) showed moulds contamination using MY50G (7 x 10^3). Therefore, in this series of investigations, SMA was more appropriate for qualitative and quantitative determination of moulds.

These results pointed to the fact that media with limited amount of free water suppressed the growth of moulds that are not extremely xerophilic in nature. It is also known that xerophilic moulds can be divided into fast-growing and slow-growing forms (P i t t and H o c k i n g, 1985). Slow-growing moulds, even under optimal conditions can be overgrown by fast-growing xerophiles.

After monocultivation of different colonies formed on SAM and MY50G media and examination of their morphological and other properties, seven different species were identified. The majority belonged to genus *Aspergillus,*
in oregano samples (57.14%) and clove samples (28.57%), respectively. Other identified species in oregano samples were *Alternaria alternata* (14.28%), *Rhizopus stolonifer* (14.28%), and *Penicillium* sp. (14.28%).

Even percentage share (28.57%) was recorded in moulds from genus *Aspergillus* and *Penicillium* in clove samples. Other identified moulds were from genera *Alternaria* (*A. alternata*), 14.28%, *Rhizopus* (*R. stolonifer*), 14.28%, *Penicillium* (*P. aurantiogriseum, Penicillium* sp.), 28.57% and *Cladosporium* (*Cladosporium* sp.) with the share of 14.28%.

Tables 2 and 3 show the percentage of moulds species in oregano and clove samples.

Tab. 2. – Presence of moulds species in oregano samples

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Share, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus</td>
<td>A. flavus</td>
<td>57.14</td>
</tr>
<tr>
<td></td>
<td>A. niger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. rubrum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. candidus</td>
<td></td>
</tr>
<tr>
<td>Alternaria</td>
<td>A. alternata</td>
<td>14.28</td>
</tr>
<tr>
<td>Rhizopus</td>
<td>R. stolonifer</td>
<td>14.28</td>
</tr>
<tr>
<td>Penicillium</td>
<td>P. sp.</td>
<td>14.28</td>
</tr>
</tbody>
</table>

Tab. 3. – Presence of moulds species in clove samples

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Share, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus</td>
<td>A. flavus</td>
<td>28.57</td>
</tr>
<tr>
<td></td>
<td>A. rubrum</td>
<td></td>
</tr>
<tr>
<td>Cladosporium</td>
<td>Cladosporium sp.</td>
<td>14.28</td>
</tr>
<tr>
<td>Penicillium</td>
<td>P. aurantiogriseum</td>
<td>28.57</td>
</tr>
<tr>
<td></td>
<td>Penicillium sp.</td>
<td></td>
</tr>
<tr>
<td>Alternaria</td>
<td>A. alternata</td>
<td>14.28</td>
</tr>
<tr>
<td>Rhizopus</td>
<td>R. stolonifer</td>
<td>14.28</td>
</tr>
</tbody>
</table>

The emergence of *Aspergillus*, *Penicillia*, and *Rhizopus* species on the three different media greatly indicated the presence of these moulds as the dominant mycoflora of different spices. This observation was greatly in agreement with other authors who studied mycoflora of spices and medicinal herbs (E l - K a d y et al., 1995; D i m i č et al., 2008). Early T a k a t o r i et al. (1977) and A y r e s et al. (1980) found the *Aspergillus* and *Penicillium* spp. the main mycopopulation of cardamom, cinnamon, fennel, coriander, cumin, black cumin and white pepper all of which are common in the food industry. The contamination with fungal species resulted from neutral extraneous contamination by dust following storage in humid conditions (D o m s č et al., 1981). Moulds fall into two ecological categories, e.g., field and storage moulds. Field moulds were observed to invade development or mature seeds while it is on the plant, the major field moulds genera being *Alternaria, Fusarium* and
Cladosporium. On the other hand, storage moulds are those encountered on plants at moisture conditions routinely found in stored products. These moulds principally belong to species *Aspergillus* and *Penicillium* (Abou Donia, 2008). The spices can undergo fungal contamination mainly during spice processing, storage and transport (Dimić et al., 2008).

In clove samples (Table 4), besides aflatoxicogenic moulds from genus *Aspergillus*, *Penicillium aurantiogriseum* has been determined as dominant species. This microorganism belongs to ochratoxin A producers (Škrinjar and Horvat-Skenderović, 1992).

Original medium, MY50G has shown better efficiency in determination of *Aspergillus* species, based on results of micropopulation quantitation in oregano samples. The frequency of *Aspergillus* species in overall population was 100% on MY50G, while frequency was only 51% on SMA (Figure 1). The highest frequency of *Penicillium* genera was determined on SMA medium (14.5%). On MY50G medium, this value was 3.3% (Figure 2).

![Fig. 1. – Frequency of *Aspergillus* spp. on SMA (1) and MY50G (2)](image1)

![Fig. 2. – Frequency of *Penicillium* spp. on SMA (1) and MY50G (2)](image2)
The variation in frequency of mycopopulation of oregano and clove cultivated on SMA and MG50Y media is most probably related to the strain type within one species. Environmental factors also have significant effect and can induce the growth of mycopopulation on lower aw values (optimal temperature and type of nutritive components in the medium). Xerophiles, especially selective ones tend to be very sensitive on environmental conditions.

A s k u n et al. (2007) used Rose-Bengal Chloramphenicol Agar (Oxoid, CM 549) and Dichloran-Glycerol (DG18) Agar (Oxoid, CM 729) for determination of xerophilic moulds. Other media can also be used such as Dichloran-Glycerol (DG18) Agar Base (P i t t and H o c k i n g, 1985), MY70FG and MY50FG (B e u c h a t and H o c k i n g, 1990), MY50S and MY40S (B e u c h a t, 1998).

Presence of mycotoxins was determined in examined samples (5 oregano and 5 clove samples) in 80% of cases (Table 4).

<table>
<thead>
<tr>
<th>Oregano</th>
<th>Clove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin B₁ (µg/kg)</td>
<td>Ochratoxin A (µg/kg)</td>
</tr>
<tr>
<td>7.5</td>
<td>22.4</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Not detected</td>
<td>4</td>
</tr>
<tr>
<td>5.3</td>
<td>5.7</td>
</tr>
</tbody>
</table>

The origin of mycotoxins in spices samples can be the result of their previous synthesis during storage of these products. However, there is the possibility of their production by moulds that contaminated the spices during storage. This ability is characteristic for moulds belonging to *Penicillium* genus since they can reproduce at lower temperatures (around +5°C), and in some cases even produce toxins in these environmental conditions (Š k r i n j a r et al., 1998).

The risk of contamination by mycotoxins is an important food safety concern for grains and other field crops. Mycotoxins affecting groundnuts/peanuts, cereals (maize, rice, sorghum, wheat, barley and oats), spices (black pepper, ginger and nutmeg) and chili are considered to be of greater significance for human beings (B h a t and V a s a n t h i, 2003; CAST, 2003; B r y d e n, 2007).

Over the last two decades various international evaluation on maximum residue limits and regulations for mycotoxins were published. A study by the United Nations’ Food and Agriculture Organization (FAO) on worldwide regulations for mycotoxins revealed that at least 77 countries now have specific regulations for mycotoxins (FAO, 2004). In the Republic of Serbia, maximum residue limits for mycotoxins in spices are set to 30 µg/kg for total aflatoxins and 10 µg/kg for ochratoxin A.
CONCLUSION

Based on obtained results, it can be concluded that it is necessary to use selective media adjusted to specific requirements of xerophiles in order to achieve proper isolation and accurate contamination degree of spices by xerophilic moulds. Utilization of selective media enables acquiring representative insight in spices mycopopulation.

Spices are potential source of mycotoxins, hence the necessity of regular mycotoxicological analysis of these products with the aim of consumers’ protection, prevention of food spoilage and consequent significant economic losses. For this reason, such analyses should be mandatory in evaluation of food safety parameters.

The ELISA test was used as an initial screening procedure in order to determine the presence of ochratoxin A and other mycotoxins.

REFERENCES

КСЕРОФИЛНЕ ПЛЕСНИ ИЗОЛОВАНЕ ИЗ ЗАЧИНА КОЈИ СЕ КОРИСТЕ У ИНДУСТРИЈИ МЕСА КАО ПОТЕНЦИЈАЛНИ ПРОДУЦЕНТИ МИКОТОКСИНА

Марија М. Шкрињар1, Славица М. Весковић Морачанин2, Весна В. Јанковић3

1 Технолошки факултет, Универзитет у Новом Саду, Булевар цара Лазара 1, 21000 Нови Сад, Србија
2 Институт за хигијену и технологију меса, Каћанског 13, 11000 Београд, Србија
3 Институт за ботанику, Универзитет у Београду, Таковска 43, 11000 Београд, Србија

Резиме

Као један од могућих извора контаминације производа од меса токсигеним плеснима често се наводе зачини. врсте које се појављују као контаминенти зачини су ксерофилне, складишне плесни, најчешће из родова *Aspergillus*, *Eurotium* и *Penicillium*. Узимајући у обзир чињеницу да зачини представљају могућ извор контаминације финалног производа, као и да су потенцијални продуценти микотоксинана, неопходно је уочити степен контаминације плеснима и њихово потенцијално физиолошко својство да продукују секундарне метаболите – микотоксине.

Миколошким анализама обухваћено је по пет узорака оригана и каранфилића. Присуство плесни испитано је паралелним коришћењем Sabouraud малтозног агара (SMA) и подлоге која фаворизује раст ксерофилних врста – сладни квашчев екстракт агар са 50% глукозе (MY50G).

Изоловане плесни сврстане су у пет родова (*Aspergillus*, *Alternaria*, *Cladosporium*, *Rhizopus* и *Penicillium*) и 9 врста.

Микотоксиколошка испитивања обухватала су утврђивање присуства афлатоксина Б1, охратоксина А и зеараленона. Испитивања су вршена употребом ELISA теста и комерцијалних китова произвођача Тецна, Италија.

Резултати испитивања су показали присуство афлатоксина Б1, охратоксина А и зеараленона у готово свим узорцима, осим у једном узорку оригана и у једном узорку каранфилића.

Као закључак наведених испитивања намеће се потреба за обавезним микотоксиколошким испитивањима сировина намењених изради производа од меса, првенствено зачини. Нарочито обавезним смatraју се испитивања присуства афлатоксина Б1 и охратоксина А. Наведени секундарни метаболити познати су као веома токсични микотоксини који су уврштени у групу 1 хуманих карциногена.

КЉУЧНЕ РЕЧИ: ELISA, зачини, микотоксини, плесни, селективне подлоге

ACKNOWLEDGEMENT

The results from this paper are part of the Project III, No 46009 Improvement and development of hygienic and technological procedures in production of animal originating foodstuffs with the aim of producing high-quality and safe products competitive on global market, funded by the Ministry of Science of Serbia.
MITIGATING ABIOTIC STRESS IN CROP PLANTS BY MICROORGANISMS

ABSTRACT: Microorganisms could play an important role in adaptation strategies and increase of tolerance to abiotic stresses in agricultural plants. Plant-growth-promoting rhizobacteria (PGPR) mitigate most effectively the impact of abiotic stresses (drought, low temperature, salinity, metal toxicity, and high temperatures) on plants through the production of exopolysaccharates and biofilm formation. PGPR mitigate the impact of drought on plants through a process so-called induced systemic tolerance (IST), which includes: a) bacterial production of cytokinins, b) production of antioxidants and c) degradation of the ethylene precursor ACC by bacterial ACC deaminase. Symbiotic fungi (arbuscular mycorrhizal fungi) and dual symbiotic systems (endophytic rhizospheric bacteria and symbiotic fungi) also tend to mitigate the abiotic stress in plants.

KEY WORDS: adaptation, microorganisms, plant, soil, stress

INTRODUCTION

Abiotic stresses affect the productivity of agricultural crops as well as the microbial activity in soil. Extreme conditions such as prolonged drought, intense rains flooding, high temperatures, frost and low temperatures, which are expected to intensify in the future due to climate changes, will significantly affect plants and soil microorganisms.

Microorganisms could play an important role in adaptation strategies and increase of tolerance to abiotic stresses in agricultural plants. Plant-growth-promoting rhizobacteria (PGPR) are associated with plant roots and mitigate most effectively the impact of abiotic stresses (drought, low temperature, salinity, metal toxicity, and high temperatures) on plants through the production of exopolysaccharates and biofilm formation. When plants are exposed to stress conditions, rhizospheric microorganisms affect plant cells by different mechanisms like induction of osmoprotectors and heat shock proteins.

During the crop production, microorganisms can be used for (a) monitoring of biological activity in soil (microbial number, enzymatic activity and biodiver-
Adaptation of Microorganisms as a Response to Abiotic Stresses

A large number of environmental factors affect the microbial communities in soil. Some factors are referred to as modulators (Basler et al., 2001), in contrast to the resources needed for the growth of microbial communities (e.g., carbon, nitrogen). For example, soil temperature, pH, salinity, and water potential are considered as modulators. Plant and microbial communities change in response to stress conditions and there develop new, tolerant communities, adapted through complex regulatory processes involving many genes (Milošević and Marinović, 2011).

Soil microbial communities consist of many populations, each with a characteristic response curve to a particular environmental factor, indicating the community’s physiological flexibility. Changes in the environment may change the composition and biomass of a microbial community. All microorganisms have a set of optimal environmental conditions, which secure their optimal growth (Pettersson, 2004).

When exposed to stress (drought, excess moisture, high and low temperatures, metal toxicity), most microorganisms have the ability to survive in the soil in an inactive state, but their activity is restored under favorable conditions. Poor and/or degraded soils are inhabited by a narrow range of microbial genera and species, which is reflected on soil fertility and the growth of plants.

Prolonged exposure to stress and the impact of recurring stress factors (stress on stress) impacts the number of microbes in the soil, but not necessarily their metabolic activity (Griffiths et al., 2000). Each bacterial species has specific growth dynamics which is highly sensitive to environmental factors and it is a more reliable indicator of stress than metabolic activity (Bloem and Breur, 2003; Rajapaksha et al., 2004). Experiments have shown that respiration may increase or decrease in response to stress (Tobor-Kaplon et al., 2006), indicating that it is not a reliable stress indicator. In a study of Rajapaksha et al. (2004), addition of 128 mg of Zn/kg of soil reduced microbial respiration by 30% and microbial growth by 90%. Reduced presence of azotobacters and reduced dehydrogenase activity was registered in soils with a nickel content of 23 to 75 mg/kg of soil. However, a high lead content in the soil inhibited the growth of azotobacters but it did not inhibit soil dehydrogenase activity (Milošević et al., 2008).

Microorganisms are capable of surviving high temperatures caused by fire depending on its duration and intensity. Fires develop high temperatures and cause a rapid loss of water (especially in surface soil layers), changing the soil microclimate, and indirectly affecting the soil microbial community. Most
biological reactions are temperature dependent. Exposure to high temperature increases the rates of nutrient decomposition and release. Burning of crop residues in a wheat-soybean rotation did not affect the total number of bacteria and the number of nitrogen-fixing bacteria in soil (Harris et al., 1995). A study of Vázquez et al. (1993) showed that, one month after burning of vegetation cover, the bacterial population was 25 times lower and the number of fungi decreased by about 5% compared with a soil that was not subjected to burning. The population of fungi was reduced in the soils periodically subjected to burning over a period of 10 years (Klopatek et al., 1994, cit. Fites-Kaufman et al., 2006).

Microbial adaptation to stress is a complex regulatory process in which a number of genes are involved (Tobor-Káplon et al., 2008; Grover et al., 2010). Certain microbial species live in extreme habitats (thermophiles and halophytes) and they use different mechanisms to reduce stress (Madigan, 1999; cit. Grover et al., 2010). When subjected to stress conditions, most rhizobacteria produce osmoprotectors (K+, glutamate, trehalose, proline, glycine, and polysaccharates).

MICROORGANISMS: ALLEVIATION OF ABIOTIC STRESSES ON PLANTS

Investigations has shown that certain microbial species and/or strains enhance plant tolerance to abiotic stresses such as drought, salinity, nutrient deficiency or excess (Yang et al., 2008), and high contents of heavy metals (Rajapaksha et al., 2004; Grover et al., 2010; Milošević and Mrinković, 2011). Specifically, rhizospheric microorganisms have the greatest impact on the tolerance of agricultural plants to abiotic stresses. When near plant roots, soil microorganisms trigger different mechanisms that affect plant tolerance to stress. They produce indole acetic acid, gibberellins, and other substances that promote the growth of root hairs and increase total root area, which in their turn facilitate nutrients uptake by plants. Plant-growth-promoting rhizobacteria (PGPR), which live in association with plant roots, elicit the largest influence on plants, affecting their productivity and immunity. PGPR inhabit the rhizosphere of many agricultural plants and they take part in increasing plant growth and reducing diseases caused by pathogenic fungi, bacteria, viruses, and nematodes (Klopper et al., 2004). Yang et al. (2008) introduced the term ‘induced systemic tolerance’ (IST) that is caused by PGPRs. According to these authors, the mechanism of IST causes physical and chemical changes in plants, which result in plant tolerance to abiotic stresses.

The most important mechanism in many bacteria that directly stimulates plant growth is the production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Under stress conditions, the bacterial enzyme facilitates the growth of plants by decomposing plant ACC (ethylene precursor in plants). Saleem et al. (2007) described the role of ACC deaminase-containing
PGPRs in crop production. By reducing the level of ethylene, the plant becomes more resistant to stress conditions in the environment (Glík, 1999).

AM fungi alleviate the effects of drought and salinity stresses, osmoregulation and proline accumulation. *Glomus intraradices* increases the tolerance of *Pterocarpus officinalis* to excessive moisture (Grove et al., 2010). In addition, dual symbiotic systems tend to mitigate the effect of abiotic stress on plants. The endophytic fungus *Cuvularia* sp. has been isolated from *Dichathelium lanuginosum* growing on a geothermal soil and showing to be thermotolerant to temperatures of 50°C to 65°C (Redman et al., 2002). When the plant and the fungus grow separately, they do not tolerate temperatures above 38°C.

Drought / excessive moisture

Drought stress limits crop growth and productivity, especially in arid and semi-arid regions. Some microbial species and/or strains that inhabit plant rhizosphere use different mechanisms to mitigate negative effects of drought on plants (Table 1). According to Grove et al. (2010), certain microbial types may mitigate the impact of soil drought through production of exopolysaccharates, induction of resistance genes, increased circulation of water in the plant, and the synthesis of ACC-deaminase, indole-acetic acid and proline.

Crop inoculation (with e.g. *Bacillus amyloliquefaciens*) leads to the production of polysaccharates (EPS) which tends to improve soil structure by facilitating the formation of macroaggregates. This in turn increases plant resistance to stress due to water shortage. Soils with a high content of small aggregates contain more nutrients in the form available for plants and microorganisms (NO₃, P₂O₅, K₂O), as indicated by high values of dehydrogenase (Mišević et al., 2002a). However, a high portion of small aggregates causes poor aeration and evacuation of water from soil pores, which leads to a decline in soil fertility in the long run. Macroaggregates are guardians of soil fertility, because they maintain a balance between aerobic and anaerobic conditions and ensure a gradual uptake of nutrients from soil reserves. Inoculation of wheat and sunflower with different species and/or strains of EPS-producing bacteria tended to alleviate drought stress (Table 1).

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Crop</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantoea agglomerans</td>
<td>Wheat</td>
<td>Production of EPS which affects the structure of rhizospheric soil</td>
</tr>
<tr>
<td>Rhizobium sp.</td>
<td>Sunflower</td>
<td>Production of EPS which affects the structure of rhizospheric soil</td>
</tr>
<tr>
<td>Pseudomonas putida -P45</td>
<td>Sunflower</td>
<td>Production of EPS which affects the structure of rhizospheric soil</td>
</tr>
<tr>
<td>Azospirillum sp.</td>
<td>Wheat</td>
<td>Increased water circulation</td>
</tr>
<tr>
<td>Achromobacter piechaudii ARV8</td>
<td>Tomato, Pepper</td>
<td>Synthesis of ACC-deaminase</td>
</tr>
</tbody>
</table>
Table 1: Effects of PGPR on Plant Growth and Development

<table>
<thead>
<tr>
<th>Organism</th>
<th>Host Plant</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variovorax paradoxus</td>
<td>Pea</td>
<td>Synthesis of ACC-deaminase</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>Pea</td>
<td>Decreased ethylene production</td>
</tr>
<tr>
<td>AM fungi</td>
<td>Sorghum</td>
<td>Increased water circulation</td>
</tr>
<tr>
<td>Brome mosaic virus</td>
<td>Rice</td>
<td>Unknown</td>
</tr>
<tr>
<td>Pseudomonas mendocina and Glomus intraradices</td>
<td>Lettuce</td>
<td>Increased antioxidative status</td>
</tr>
<tr>
<td>Bacillus megaterium and Glomus sp.</td>
<td>Clover</td>
<td>Production of indole acetic acid and proline</td>
</tr>
</tbody>
</table>

Source: Grover et al. (2010)

PGPR mitigate the impact of drought on plants through a process so-called *induced systemic tolerance* (IST) which includes: a) production of cytokinins, b) production of antioxidants and c) degradation of the ethylene precursor ACC by bacterial ACC deaminase. (a) The production of cytokinins causes the accumulation of abscisic acid (ABA) in leaves, which in its turn results in the closing of stomata (Figueiredo et al., 2008; Cowan et al., 1999; cit. Yang et al., 2009). (b) The production of antioxidants (e.g., the enzyme catalase) causes the degradation of reactive forms of oxygen. (c) The bacterial-produced ACC deaminase degrades the ethylene precursor 1-amino-cyclopropane-1-carboxylate (ACC) (Yang et al., 2009).

Oxygen is essential for the life on Earth. It is used by all aerobic organisms for the production of energy by the process of respiration. In the course of respiration, oxygen is reduced to water while complex organic molecules (lipids, carbohydrates, proteins) are subject to oxidative degradation. Of the total amount of oxygen in cells, only a small portion (2%-3%) is transformed into toxic forms that are referred to as reactive oxygen species (ROS). Homeostasis in plant cells is maintained for as long as there is a balance between the production of ROS and antioxidants. When exposed to drought stress, some rhizobacteria produce antioxidants which neutralize the toxic effects of ROS in plant cells, reducing damage to cells and biomolecules to a minimum (Grover et al., 2010).

Plant inoculation with ACC-deaminase-containing rhizobacteria causes root elongation and water uptake from deeper soil layers, which is reflected on plant growth and development especially under drought conditions (Zahir et al., 2008; cit. Grover et al., 2010).

Our investigation on the effect of soybean seed inoculation with five *Bradyrhizobium japonicum* strains under three drought levels of conditions showed that differences existed in the reduction of dry matter in plants (Table 2). The soybean plants inoculated with the strains D 216 and 2b plants were most tolerant to soil drought. On average for all three drought levels, the lowest dry weight reduction was registered in the plants inoculated with the strain D 216 (10.05%).

Soybean seed inoculation with five *Bradyrhizobium japonicum* strains under three drought levels resulted in uneven reduction of nitrogen in the aboveground plant parts (Table 3). On average for all three drought levels, the lowest nitrogen reduction in the aboveground plant parts was recorded in the
plants inoculated with the strains 1 b and 511 (3% and 7%, respectively), as compared with the control variant. The results presented in Tables 2 and 3 indicate the possibility of selection and application of microbial strains in the production of soybean under drought conditions.

Tab. 3. – Effect of *Bradyrhizobium japonicum* inoculation on nitrogen content (%) in soybean plants grown under three drought levels

<table>
<thead>
<tr>
<th>Drought intensity</th>
</tr>
</thead>
</table>
| **Bradyrhizobium japonicum**
| (strain)
| Ø | V 2 | V 3 | V 4 | AVERAGE V2-V4 | | |
| D 216 | 518 | 511 | 2b | lb |
| % N | % N | % N | % N | % N | % N | % N |
| 2.188 | 1.948 | 1.995 | 2.040 | 1.994 |
| 100 | 100 | 100 | 100 | 100 |

Under conditions of excessive moisture, microorganisms take up the available oxygen while toxic substances accumulate in the soil. In such conditions, plants reduce the permeability of roots, water absorption and nutrients uptake, which reduce the growth of aboveground plant parts and roots. Provoked by excessive moisture, roots release large quantities of aminocyclopropane carboxylate-1 (ACC) into the soil. Some groups of bacteria degrade ACC and reduce its concentration in the soil by secreting the enzyme ACC-deaminase. In excessively moist soil, bacteria such as Enterobacter cloacae and Pseudomonas putida predominate over fungi and actinomycetes (G r i c h k o and G l i c k, 2001).

Mycorrhizal fungi mitigate the stress caused in plants by excessive moisture (S a i n t - E t i e n n e et al., 2006, cit. G r o v e r et al., 2010). It is hypothesized that, under conditions of excessive moisture, the accumulation of acetaldehyde and the high toxicity of ethanol intermediates in roots are responsible for damage to sensitive plant species.
Temperatures

High temperature promotes plant growth and development, while low temperature is the most important limiting factor to the productivity and geographic distribution of agricultural crops.

Some bacterial species and strains affect plant tolerance to high temperature (Grove et al., 2010). So, *Pseudomonas* sp. strain NBRI0987 causes thermotolerance in sorghum seedlings, which consequently synthesize high molecular weight proteins in leaves thus increasing the plant biomass. The bacterium *Burkholderia phytofirmans* PSJN colonizes grapevine residues and protects the plant against heat and frost through increases in the levels of starch, and proline and phenols. Inoculation of wheat seeds with *Serratia marscescens*, strain SRM, and *Pantoea dispersa*, strain 1A increases the seedlings biomass and nutrients uptake at low temperatures.

Salinity

Microorganisms use different mechanisms to alleviate the salinity stress in agricultural crops (Tab. 4). Some rhizobacterial strains (PGPR) affect the growth and development of tomatoes, peppers, beans, and lettuce grown in saline environments (Grove et al., 2010; Yildirim and Taylor, 2005). Inoculation of wheat seedlings with bacteria that produce exopolysaccharates (EPS) affect the restriction of sodium uptake and stimulation of plant growth under conditions of stress caused by high salinity (Ashraf et al., 2004, cit. Grove et al., 2010). Corn, beans and clover inoculated with AM fungi improved their osmoregulation and increased proline accumulation which resulted in salinity resistance (Feng et al., 2002, cit. Grove et al., 2010).

Tab. 4. – Effect of microorganisms on mitigation of salinity stress in agricultural crops

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Crop</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achromobacter piechaudii</td>
<td>Tomato</td>
<td>Synthesis of ACC-deaminase</td>
</tr>
<tr>
<td>Piriformaspora indica</td>
<td>Barley</td>
<td>Increased antioxidative capacity</td>
</tr>
<tr>
<td>AM fungi</td>
<td>Sorghum</td>
<td>Increased water circulation</td>
</tr>
<tr>
<td></td>
<td>Corn</td>
<td>Improved osmoregulation and proline accumulation</td>
</tr>
<tr>
<td></td>
<td>Clover</td>
<td></td>
</tr>
<tr>
<td>B. amylolequfaciens</td>
<td>When</td>
<td>Restricted Na+ uptake</td>
</tr>
<tr>
<td>Rhizobium and Pseudomonas</td>
<td>Wheat</td>
<td>Restricted Na+ uptake</td>
</tr>
</tbody>
</table>

Source: Grove et al. (2010)

Heavy metals

Heavy metals affect the soil microbial population, their effects depending on the element in question and its concentration on one side and the bacterial
species/strain on the other. Some heavy metals are essential micronutrients that are required in small quantities for the growth of microorganisms and plants. Microorganisms bind soluble heavy metals in three ways (biosorption, bioaccumulation, and the binding by metabolic products), which indirectly reduce the negative impact of heavy metals on plants (Govdarić et al., 1997).

Studies have shown that the effect of nickel on the microbiological soil properties depended on the microbial group and agricultural plant species (Kastori et al., 2006, Milošević et al., 2002). Methyllobacterium oryzae and Burkholderia sp. reduce nickel and cadmium stress in tomato by reducing their uptake and translocation (Marquez et al., 2007; Madhivan et al., 2007). Inoculation with rhizobacteria alleviates abiotic stresses to plants caused by drought, salinity and metal toxicity (Dimpa et al., 2009). These authors pointed out that the bacteria that are used as biofertilizers are at the same time plant bioprotectants against stress. This interaction between plants and rhizobacteria (e.g., Bacillus) mitigates stress conditions. Heavy metals such as Cd, Ni, and Pb disrupt the water regimen in plants. Proline accumulation in plant cells is a biomarker for stress induced by heavy metals.

The symbiotic associations between Rhizobium/Bradyrhizobium and leguminous plants are sensitive to the presence of heavy metals in soil (Govdarić et al., 1997). Heavy metals tend to inhibit nodulation, i.e., they interrupt the rate of symbiosis between plants and mikrosymbionts depends on heavy metals concentration in soil.

CONCLUSION

Microorganisms help agricultural plants to increase their tolerance and adaptation to abiotic stresses. The complex and dynamic interactions between microorganisms and plant roots under conditions of abiotic stress affect not only the plants but also the physical, chemical, and structural properties of soil. The possibility of mitigation of abiotic stresses in plants opens a new chapter in the application of microorganisms in agriculture. Some microbial species and strains could play an important role for understanding plant tolerance to stress, adaptation to stress, and mechanisms that develop in plants under stress conditions. Selection of microorganisms from stressed ecosystems may contribute to the concept of biotechnology application in agriculture.

LITERATURE

УТИЦАЈ МИКРООРГАНИЗМА НА УБЛАЖАВАЊЕ ПОСЛЕДИЦА АБИОТИЧКОГ СТРЕСА КОД ПОЉОПРИВРЕДНИХ КУЛТУРА

Нада А. Милошевић, Јелена Б. Маринковић, Бранислава Б. Тинтор
Институт за ратарство и повртарство, Максима Горког 30, 21000 Нови Сад
e-mail: nada.milosevic@ifvcns.ns.ac.rs

Резиме

Микроорганизми могу имати значајну улогу у стратегијама адаптација и повећању толерантности пољопривредних биљних врста на абиотичке стресове. Највећи утицај ублажавања абиотичких стресова на биљку (суша, ниске температуре, токсичност метала и високе температуре) имају микроорганизми који насељавају ризосферно земљиште, а промотери су биљног раста (ПГПР), кроз продукцију егзополисахарида и формирањем биофилма. ПГПР ублажавају утицај суше на биљке индукуваним системом толеранције (ИСТ): а) продукцијом бактеријског цитокинина б) продукцијом антиоксиданата и ц) деградацијом етилен прекурсора АЦЦ бактеријским АЦЦ-деаминазом. Такође и симбиозне гљиве (abscular mycorrhizal fungi) и дуал симбиозни системи (rhizosphere, endophytic bacteria и symbiotic fungi) утичу на ублажавање абиотичких стресова у биљкама.

КЉУЧНЕ РЕЧИ: адаптација, биљка, земљиште, микроорганизми, стрес
MICROBIOLOGICAL TRANSFORMATIONS OF PHOSPHORUS AND SULPHUR COMPOUNDS IN ACID SOILS

ABSTRACT: The dynamics of phosphorus and sulphur in soil is closely related to the dynamics of the biological cycle in which microorganisms play a central role. There is not much microbiological activity in acid soils because aerobes are scarce, rhizosphere is restricted to the shallow surface layer, and the biomass of microorganisms decreases with higher acidity. The aim of the research was to investigate the number of microorganisms, which decompose organic and inorganic phosphorus compounds and organic sulphur compounds in calcocambisol, luvisol, and pseudogley.

The following parameters were determined in the soil samples: pH in H₂O and in 1MKCl; the content of CaCO₃ (%); humus content (%), nitrogen content (%); the content of physiologically active phosphorus and potassium (mg P₂O₅/100g of soil; mg K₂O/100g of soil). The number of microorganisms was determined by the method of agar plates on appropriate nutrient media: the number of microorganisms solubilizing phosphates on a medium by Muramcov; the number of microorganisms that decompose organic phosphorus compounds on a medium with lecithin; and the number of microorganisms that transform organic sulphur compounds on a medium by Baar.

All three types of soil are acid non-carbonate soils with a low level of available phosphorus and a more favorable amount of potassium, nitrogen, and humus. The largest number of bacteria, which transform organic phosphorus compounds, was found in calcocambisol. The largest number of phosphate solubilizing bacteria was recorded in pseudogley, whereas the largest number of phosphate solubilizing fungi was recorded in calcocambisol. The largest number of bacteria, which transform organic sulphur compounds, was recorded in pseudogley.

KEY WORDS: acid soil, microorganisms, phosphorus, sulphur

INTRODUCTION

Soil microorganisms play a major role in the decomposition of plant residues, creation of humus and maintenance of stable soil structure. They also participate in the cycles of the most important macro and microelements such as phosphorus and sulphur (Cairney, 2000; Kironomos et al., 2000).

* Corresponding author, e-mail adress: draganastamenov@yahoo.com
The dynamics of phosphorus in soil is closely related to the dynamics of the biological cycle in which microorganisms play a central role (Wakehin et al., 2004; Vassilev et al., 2006). Microorganisms affect the amount of phosphorus accessible to plants by means of mineralization of organic phosphorus compounds, immobilization of available phosphorus and solubilization of non-soluble phosphorus minerals such as tricalcium phosphate (Chen et al., 2006; Kang et al., 2002; Pradhan and Sukla, 2005). Organic phosphorus compounds in soil are an important supply of this plant nutrient but only after they have been mineralized (Gyaneshwar et al., 2002). Mineralization is catalyzed by microbiological enzymes phosphatases (Obersohn et al., 2001). Organic phosphorus mineralization in soil depends on temperature, pH, soil moisture, degree of aeration (Dalal, 1977). According to Wittmann et al. (2003a), optimum pH value for phosphatase activity is 4-5 and optimum temperature 35º C.

Sulphur is one of the essential plant nutrients contributing to yield and quality of crops. There are two main forms of sulphur in soil, inorganic and organic sulphur (Landers et al., 1983). In soil, sulphur is mainly found in organic form (90%). Organic sulphur is present in three forms, ester sulfate-S, C-bonded S and non-reducible organic sulphur (Freney et al., 1975). Sulphur transformations in soil are considered to result primarily from microbial activity, which involves processes of mineralization, immobilization, oxidation, and reduction. Mineralization of organic sulphur compounds and transformation into forms accessible to plants is catalyzed by enzyme sulphatase (Eivazi and Bayan, 1996; Hayes et al., 2000). Sulphatase activity has been noticed even in soils with extremely low values of pH (pH 3-5), but its effects in such extreme conditions are unknown (Kahkonen et al., 2002).

As acid soils are found in many areas in our country, the aim of the research was to investigate the number of microorganisms that transform inaccessible phosphorus and sulphur compounds into forms accessible to plants.

MATERIAL AND METHODS

Acid soil samples were taken from the slopes of Golija mountain (calcic cambisol), Radočevos (luvisol), and Kraljevačka valley (pseudogley).

The following chemical properties of soil were determined: pH in H₂O and in 1MKCl; the content of CaCO₃ (%); humus content (%); total nitrogen content (%); the content of physiologically active phosphorus and potassium (mg P₂O₅/100g of soil; mg K₂O/100g of soil).

The number of microorganisms was determined by the method of agar plates (Trolldenier, 1996) on appropriate nutrient media (Hi Media Laboratories Pvt. Limited Mumbai, India): the number of bacteria decomposing organic phosphorus compounds on a medium with lecithin, the number of phosphate solubilizing bacteria and fungi on a medium with aluminum phosphate, and the number of microorganisms transforming organic sulphur compounds on a medium by Baar. All groups of microorganisms were introduced into Petri
dishes with 0.5 ml soil suspension from 10^{-4} dilution. The microorganisms were incubated at the constant temperature of 28º C. The incubation of microorganisms, which transform phosphorus compounds, lasted 2-10 days, whereas the incubation of microorganisms, which transform sulphur compounds, lasted 7-10 days.

Statistical data analysis was performed using STATISTICA 10 software. The significance of differences in the number of microorganisms between different soil types was determined upon the least significant difference (LSD).

RESULTS AND DISCUSSION

The investigated soil types are characterized by the chemical properties shown in Table 1.

Tab. 1. – Chemical properties of the investigated soil types

<table>
<thead>
<tr>
<th>Soil</th>
<th>pH In H₂O</th>
<th>pH In 1M KCl</th>
<th>Humus %</th>
<th>N %</th>
<th>CaCO₃ %</th>
<th>mgP₂O₅ u 100 g</th>
<th>mgK₂O u 100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcocambisol</td>
<td>6.2</td>
<td>4.8</td>
<td>3.2</td>
<td>0.26</td>
<td>0.26</td>
<td>4.9</td>
<td>12.25</td>
</tr>
<tr>
<td>Pseudogley</td>
<td>5.1</td>
<td>3.7</td>
<td>2.4</td>
<td>0.18</td>
<td>0.46</td>
<td>4.3</td>
<td>14.3</td>
</tr>
<tr>
<td>Luvisol</td>
<td>4.0</td>
<td>3.6</td>
<td>3.7</td>
<td>0.43</td>
<td>0</td>
<td>2.1</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Calcocambisol is a low carbonate soil. It abounds in nitrogen and has high humus content. The amount physiologically active phosphorus in it is minimal whereas the amount of potassium is greater. Pseudogley is an extremely acid type of soil. It has a medium amount of nitrogen and humus. It is characterized by a very low amount of phosphorus and calcium carbonate and a medium amount of potassium. Luvisol is an extremely acid non-carbonate soil type. It is well-provided with nitrogen and humus. The amount of phosphorus in it is low whereas the amount of potassium is somewhat greater.

Microbial communities are important in soils because of their key function in ecosystems processes such as decomposition, nutrient cycling, and plant symbioses (Nannipieri et al., 2003). All these processes enable mutual relations of microorganisms, soil, and plants. Soil pH is one of the most important soil properties related to the composition of microbial communities (Bath and Anderson, 2003; Nilsson et al., 2007; Wu et al., 2009; Brady and Weil, 2002).

Three types of acid soils were used in this research, which certainly affected the number of microorganisms. The number of bacteria decomposing organic phosphorus compounds ranged from 5.37 to 6.49×10^4 g⁻¹ of absolutely dry soil (Graph 1). The differences were not statistically significant (LSD for 5% = 5.42).
T a r a f d a r and C l a a s e n (1988) documented that almost half of the microorganisms in soils and on plant roots were able to mineralize organic P through the phosphatase action. Organic phosphorus compounds are mainly phospholipids, phytin, and nucleoproteins. A large number of bacteria are able to use phospholipids and nucleoproteins transforming them into phosphate anions. In this research, a large number of bacteria decomposing organic phosphorus compounds could provide plants with a significant amount of this nutrient. However, in acid soils, phosphate anions form bonds aluminum and iron cations and become available to plants only after the activity of microorganisms. In acid soils, fungi are more active solubilizers of insoluble phosphates, whereas in neutral soils, bacteria are more active. In this research, the number of fungi solubilizing phosphates inaccessible to plants was similar in all three types of soil, ranging from 1.41 to 1.73$\times 10^4$ g$^{-1}$ of absolutely dry soil (Graph 2). The differences in the number of this group of microorganisms in the investigated types of soil were not statistically significant (LSD for 5% = 1.21).

Phosphate solubilizing bacteria were not found in calcocambisol, whereas in the other two types of soil their number ranged from 0.49 $\times 10^4$ g$^{-1}$ to 8.81 $\times 10^4$ g$^{-1}$ of absolutely dry soil (Graph 3). A statistically significant difference in the number of bacteria was recorded between pseudogley and the other two soil types and it was on the level P < 0.05 (LSD for 5% = 7.09).

Several reports have examined the ability of different bacterial species to solubilize insoluble inorganic phosphate compounds, such as tricalcium phosphate, dicalcium phosphate, hydroxyapatite, and rock phosphate (Goldstein, 1986). It is generally accepted that the major mechanism of mineral phosphate solubilization is the action of organic acids synthesized by soil microorganisms (H a l d e r, 1990; L e y v a l, 1989; S a l i h, 1989). Among them, gluconic acid seems to be the most frequent agent of mineral phosphate solubilization. Another organic acid identified in strains with phosphate-solubilizing ability is 2-ketogluconic acid (H a l d e r, 1990, 1993). Bacteria are more effective in
phosphorus solubilization than fungi (A l a m et al., 2002). Among the whole microbial population in soil, phosphorus-solubilizing bacteria constitute 1 to 50 %, while phosphorus-solubilizing fungi are only 0.1 to 0.5 % in P solubilization potential (C h e n et al., 2006).

Unlike these results, in this research the number of phosphate solubilizing fungi was larger than the number of bacteria apart from pseudogley where the number of bacteria was larger. This could be the result of unfavorable conditions for microorganism activity in the investigated soil types. The investigated soil types are characterized by heavy soil texture, unfavorable water-air ratio, and acidity (M i l j k o v i ć, 1996). Our results confirmed the results of Y a h y a and A z a w a i (1998) who concluded that phosphate solubilizing fungi in infertile soils were more numerous than bacteria.

The number of bacteria, which transform organic sulphur compounds, amounted to thousands (Graph 4). Their smallest number was recorded in luvisol (12.16 x 10⁴ g⁻¹), whereas their largest number was recorded in pseudogley (28.01 x 10⁴ g⁻¹). The differences in the number between the investigated soil types were not statistically significant (LSD for 5% = 20.45).

Phosphate solubilizing bacteria were not found in calcocambisol, whereas in the other two types of soil their number ranged from 0.49 x 10⁴ g⁻¹ to 8.81 x 10⁴ g⁻¹ of absolutely dry soil (Graph 3). A statistically significant difference in the number of bacteria was recorded between pseudogley and the other two soil types and it was on the level P< 0.05 (LSD for 5% = 7.09).

Several reports have examined the ability of different bacterial species to solubilize insoluble inorganic phosphate compounds, such as tricalcium phosphate, dicalcium phosphate, hydroxyapatite, and rock phosphate (G o l d s t e i n, 1986). It is generally accepted that the major mechanism of mineral phosphate solubilization is the action of organic acids synthesized by soil microorganisms (H a l d e r, 1990; L e y v a l, 1989; S a l i h, 1989). Among them, gluconic
acid seems to be the most frequent agent of mineral phosphate solubilization. Another organic acid identified in strains with phosphate-solubilizing ability is 2-ketogluconic acid (H a l d e r, 1990, 1993). Bacteria are more effective in phosphorus solubilization than fungi (A l a m et al., 2002). Among the whole microbial population in soil, phosphorus-solubilizing bacteria constitute 1 to 50 %, while phosphorus-solubilizing fungi are only 0.1 to 0.5 % in P solubilization potential (C h e n et al., 2006).

Unlike these results, in this research the number of phosphate solubilizing fungi was larger than the number of bacteria apart from pseudogley where the number of bacteria was larger. This could be the result of unfavorable conditions for microorganism activity in the investigated soil types. The investigated soil types are characterized by heavy soil texture, unfavorable water-air ratio, and acidity (M i l j k o v i ć, 1996). Our results confirmed the results of Y a h y a and A z a w a i (1998) who concluded that phosphate solubilizing fungi in infertile soils were more numerous than bacteria.

The number of bacteria, which transform organic sulphur compounds, amounted to thousands (Graph 4). Their smallest number was recorded in luvisol (12.16 x 10^4 g^-1), whereas their largest number was recorded in pseudogley (28.01 x 104 g^-1). The differences in the number between the investigated soil types were not statistically significant (LSD for 5% = 20.45).

Sulphur is one of the essential plant nutrients classified as secondary nutrient. Sulphur transformations in soil are considered to result primarily from microbial activity which involves processes of mineralization, immobilization, oxidation and reduction (V i d y a l a k s h m i, 2009). So far, a great deal of attention has been paid to the isolation and identification of Sulphur Oxidizing Bacteria (C h a p m a n, 1990; W o o d, 1991; J o h n s o n, 1992), whereas very little attention has been devoted to investigating their number and activity in soil. A relatively large number of bacteria, which transform
organic sulphur compounds in the investigated soils, confirms the results of Wittman et al. (2003b) who stated that the optimum pH value for sulphatase is 4-5, which indicates that the hydrolitic activity of the enzyme is adapted to acid soils.

CONCLUSION

All three types of soil belong to the group of acid, non-carbonate soils with a low level of accessible phosphorus and a more favorable content of potassium, nitrogen, and humus.

The number of bacteria decomposing organic phosphorus compounds ranged from 5.37×10^4 g$^{-1}$ to 6.49×10^4 g$^{-1}$ of absolutely dry soil.

The number of phosphate solubilizing fungi was similar in all three types of soil, ranging from 1.41×10^4 g$^{-1}$ to 1.73×10^5 g$^{-1}$ of absolutely dry soil.

Phosphate solubilizing bacteria were not found in calcocambisol, whereas in the other two soil types their number ranged from 0.49×10^4 g$^{-1}$ to 8.81×10^4 g$^{-1}$ of absolutely dry soil.

The number of bacteria that transform organic sulphur compounds amounted to thousands. The smallest number was recorded in luvisol (12.16×10^4 g$^{-1}$), whereas the largest number was recorded in pseudogley (28×10^4 g$^{-1}$).

REFERENCES

МИКРОБИОЛОШКЕ ТРАНСФОРМАЦИЈЕ ЈЕДИЊЕЊА ФОСФОРА И СУМПОРА У КИСЕЛИМ ЗЕМЉИШТИМА

Драгана Стаменов1, Мирјана Јарак1, Симонида Ђурић1, Тимеа хајнал Јафари1, Драгана Бјелић 2

1Пољопривредни факултет, Трг Доситеја Обрадовића 8, 21000 Нови Сад
2Институт за ратарство и повртарство, Максима Горког, 21000 Нови Сад

Резиме

Динамика фосфора и сумпора у земљишту тесно је повезана са динамиком биолошког циклуса у којем микроорганизми имају централну улогу. Микробиолошка активност у киселим земљиштима није велика, јер су потиснути аероби, ризосфера је ограничена на плитку површинску зону, а са повећањем киселости смањује се и биомаса микроорганизама. Циљ ових истраживања је био да се испита заступљеност микроорганизама који разлажу органска и неорганска једињења фосфора и органска једињења сумпора у калкокамбисолу, лувисолу и псеудоглеју.

У узорцима земљишта одређени су следећи параметри: реакција земљишта (pH) у H2O и у 1MKCl; садржај CaCO3 (%); садржај хумуса (%); садржај азота (%); садржај физиолошког активног фосфора и калијума (mg P2O5/100g земљишта; mg K2O/100g земљишта). Број микроорганизама одређиван је методом агарних плоча на одговарајућим селективним храњивим подлогама: број микроорганизама који разлажу фосфате на подлози по: Мурамцов, број микроорганизама који разлажу органска фосфорна једињења на подлози са лецитином, а број микроорганизама који трансформишу органска једињења сумпора на подлози по Baar-у.

Сва три типа земљишта спадају у групу киселих бескарбонатних земљишта, са ниским садржајем приступачног фосфора и повољнијим садржајем калијума, азота и хумуса. Највећи број бактерија које трансформишу органска једињења фосфора утврђен је у калкокамбисолу. Највећи број бактерија које разлажу фосфате утврђен је у псеудоглеју, а највећи број гљива које разлажу фосфате у калкокамбисолу. Највећи број бактерија које трансформишу органска једињења сумпора утврђен је у псеудоглеју.

КЉУЧНЕ РЕЧИ: кисело земљиште, микроорганизми, сумпор, фосфор
Maja A. Karaman1*, Milana S. Novaković1, Dragiša Savić2, Milan N. Matavulj1

1 University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Dositeja Obradovića Square 2, 21 000 Novi Sad, Serbia
2 National Park Fruška Gora, Zmajev Square 1, 21 208 Sremska Kamenica, Serbia

PRELIMINARY CHECKLIST OF MYXOMYCOTA AND ASCOMYCOTA FROM FRUŠKA GORA MOUNTAIN

ABSTRACT: Fruška Gora mountain represents very important source of natural and semi-natural forest ecosystems in the northern part of the Republic of Serbia and therefore it is important source of habitats for different groups of fungi. As opposed to coordinated inventory and monitoring projects of fungi established around Europe long ago, mycological researches in Serbia are still sporadic and insufficiently coordinated by authorities and experts. In accordance with that, available data concerning the state of fungi in Serbia are scarce. The aim of this work was to collect all relevant unpublished data considering fungi in Fruška Gora and to present checklist of two fungal phyla: Myxomycota and Ascomycota. In the presented checklist, 23 recorded species of Myxomycota (known as fungal analogues) were distributed in 2 classes, 5 orders, and 7 families. The first class (Protosteliomycetes) contained only one species –
\textit{Ceratiomyxa fruticulosa} (fam. Ceratiomyxaceae). The largest order was Trichiales (9 species), while the dominant families were Stemonitidaceae and Trichiaceae, each with 6 species recorded. The most abundant species was \textit{Lycogala epidendrum} (fam. Reticulariaceae), with 13 records. Phylum Ascomycota was represented with 95 species belonging to 6 classes, 12 orders and 29 families. The most highly represented classes were Leotiomycetes (32 species) and Pezizomycetes (31 species). The most abundant species were: \textit{Xylaria polymorpha} (17 records), \textit{Xylaria hypoxylon} (14 records), and \textit{Sarcoscypha coccinea} (14 records).

KEY WORDS: Ascomycota, Checklist, Database, Fruška Gora mountain, Fungi, Myxomycota

INTRODUCTION

Despite recommendations of mycological experts and institutions (EC-CF-European Council for the Conservation of Fungi, IMA-International Mycological Association, EMA-European Mycological Association, BMS-British Mycological Society, etc.) for coordinated inventory and monitoring of fungi worldwide and global efforts of mycological society in this task, mycological researches in Serbia are still sporadic, uncoordinated and mostly neglected by

* Corresponding author: e-mail: maja.karaman@dbe.uns.ac.rs
experts (Ivančević, 1995; Karaman, 1997). Although some important but individual and unofficial projects for inventory and mapping of fungi in Serbia exist, they are mostly done by mycological societies (Lukić, 2008; Ivančević, 2010b) and no checklists or databases have been unveiled recently. Some of the most comprehensive works concerning fungi in Serbia were published by Ivančević (1995, 2002) and Uzelac (2009).

Surrounded by flat, mostly agricultural land, Fruška Gora mountain represents very important source of natural and semi-natural forest ecosystems, and thus represents a main center of interest for the investigation of fungi in the northern part of the Republic of Serbia. It was proclaimed a National Park in December 1960, with active protection area of 25,525 ha. Fruška Gora is on the border of continental climate, but the influence of height gradient and forest cover gives it the characteristics of subcontinental climate. The base of ecosystem is represented by the sessile oak forest with butcher's-broom (Aculenro-euerco Carpinentat serbicum Jov.) (Stevanović, 1995). Diversity of forest vegetation, specific geological substrate, and climate influenced the rich biodiversity, with fungi as an essential component.

Research of fungi in Fruška Gora has been represented only in a few papers (Ranković, 1955; Lisiewska and Jelić, 1971; Karaman, 1997, 2005). Cooperation between National park Fruška Gora and researchers from Department of Biology and Ecology (University of Novi Sad) has resulted in the creation of a Database of Fungi of Fruška Gora mountain, which represents summary of findings available to the authors from previous unpublished data. Therefore, the aim of this work was to present in the form of checklist a part of this database, concerning two divisions – Myxomycota and Ascomycota.

Slime molds, although no longer included in the kingdom Fungi but placed inside the kingdom Protozoa, are still being studied by some mycologists as protozoan fungal analogues, reaching the number of 1165 taxa (Kirke et al., 2008). As opposed to Fungi, slime molds have phagotrophic nutrition and somatic stages in the form of protoplasts bounded by plasma membranes, without cell walls (Mehrotra and Anjja, 1990). Since there are only two published works about slime molds in Serbia (Ing and Ivančević, 2000; Ivančević, 2010a), we included them in this checklist, as well.

Ascomycota represent the largest group of Fungi, accounting approximately 75% of all described fungi (Taylor et al., 2012), including lichenized forms and most of the fungi that lack evident sexual stage. In presented checklist, only non-lichenized part of Ascomycota is given.

MATERIAL AND METHODS

Database of Fungi in Fruška Gora mountain contains a list of species recorded by numerous authors in two time periods: 1983-1996 and 2004-2011, from 28 localities (Fig. 1), nine of which (number 3, 7, 8, 13, 15, 16, 24, 25, 28) covers the areas with the first degree of protected regime in the National park.
The first period of investigation comprised data gathered from private lists with the courtesy of legators, while records made in the second investigation period were confirmed by mycological group of Department of Biology and Ecology in Novi Sad. Determination was conducted on the basis of morphological and anatomical characteristics of the fruiting bodies, microscopic characteristics of spores and other relevant structures (Olympus BX51, Japan) and the specific chemical reactions. Literature of Department’s Library, on-line books, keys (Dennis, 1986), and specialized mycological sites were consulted during determination and systematic representation. Some of the photos made during fieldwork are available on the website by Dagiša Savić: http://www.naturefg.com/. In the presented checklist, names of legators were abbreviated (full names in Results), while localities were marked with numbers and presented on map (Fig. 1). Taxa determined to the level of genus were also included. Each species in the checklist was placed within relevant higher ranks (phylum, class, order, and family) and presented with the following data: year of finding, locality, and collector (legator). Classification and nomenclature was done in accordance with Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist (Bisby et al., 2011) and Index Fungorum (Kirk, 2012).

RESULTS

Part of the database presented in this work contains 2 phyla (Myxomycota and Ascomycota) with 9 classes, 17 orders, 36 families, 78 genera, and 118 species (Tab. 1).

Twenty-three species in the checklist belonged to the phylum Myxomycota/Mycetozoa. They were distributed in 2 classes (Protosteliomycetes,
Myxomycetes), 5 orders (Protosteliales, Liceales, Physarales, Stemonitales, Trichiales), 7 families (Ceratiomyxaceae, Reticulariaceae, Didymiaceae, Physaraceae, Stemonitidaceae, Arceyriaceae, Trichiaceae), and 15 genera. Class Protosteliomycetes had only one family – Ceratiomyxaceae, with one species Ceratiomyxa fruticulosa. The largest order of Myxomycetes was Trichiales, with 9 species. Dominant families were Stemonitidaceae and Trichiaceae. Lycogala epidendrum was the most abundant species, with 13 records.

In the phylum Ascomycota, 95 non-lichenized species were recorded, belonging to 6 classes (Dothideomycetes, Pezizomycetes, Leotiomycetes, Orbiliomycetes, Sordariomycetes, Taphrinomycetes), 12 orders, 29 families, and 63 genera. The most represented classes were Leotiomycetes (32 species) and Pezizomycetes (31 species), with Pezizales being the most represented order. Dominant families in the phylum Ascomycota were Erysiphaceae (11), Xylariaceae (9), Pyronemataceae (7), Morchelaceae (7), and Helotiaceae (6). The most abundant species were Xylaria polymorpha (17 records), Xylaria hypoxylon (14 records), and Sarcoscypha coccinea (14 records).

LIST OF LEGATORS/COLLECTORS

CHECKLIST OF SPECIES

MYXOMYCOTA

PROTOSTELIOMYCETES

Protosteliales

Ceratiomyxaceae

MYXOMYCETES

Liceales

Reticulariaceae

2. *Dictydiaethalium plumbeum* (Schumach.) Rostaf. ex Lister – 16 (SD, 2007)

4. Lycogala flavofuscum (Ehrenb.) Rostaf. – 28 (JM, 1996)
5. Reticularia lycopodendon Bull. – 16 (SD, 2007)

Physarales

Didymiaceae
6. Didymium sp. – 23 (SD, 2007)

Physaraceae
7. Physarum sp. – 26 (SD, 2007)

Stemonitales

Stemonitidaceae
11. Lamproderma sp. – 22 (SD, 2008)
12. Stemonitis axifera (Bull.) T. Macbr – 7 (RD, 1995), 16 (SD, 2007)

Trichiaceae

Arcyriaceae
15. Arcyria cinerea (Bull.) Pers. – 10 (SD, 2008)
16. Arcyria denudata (L.) Wettst. – 6 (SD, 2008)
17. Arcyria pomiformis (Leers) Rostaf. – 10 (SD, 2007)

Trichiaceae
18. Hemitrichia sp. – 17 (SD, 2008)
19. Hemitrichia serpula (Scop.) Rostaf. – 17 (SD, 2010)
20. Metatrichia vesparium (Batsch) Nann.-Bremek. Ex G.W. Martin & Alexop. – 10 (SD, 2008)
22. Trichia favoginea (Batsch) Pers. – 17 (SD, 2007)

ASCOMYCOTA (non-lichenized)

DOTHIDEOMYCETES

Capnodiales

Mycosphaerellaceae
24. Mycosphaerella millegrana (Cooke) J. Schrot. – 10 (SD, 2011)
25. Ramularia rubella (Bonord.) Nannf. – 24 (SD, 2011)
26. Septoria urticae Roberge ex Desm. – 24 (SD, 2011)

Incertae sedis

Polystomellaceae
27. Dothidella ulmi (C.-J. Duval) G. Winter – 23 (SD, 2011)

Incertae sedis
28. Catinella olivacea (Batsch) Boud. – 4 (SD, 2008)

Pleosporales

Montagnulaceae
29. Microsphaeropsis hellebori (Cooke & Massée) Aa – 1 (SD, 2011)
Pleosporaceae
30. *Alternaria alternata* (Fr.) Keissl. – 18 (SD, 2011)

PEZIZOMYCETES

Pezizales

Discinaceae
32. *Gyromitra infula* (Schaeff.) Quél. – 15 (SD, 2004)

Helvellaceae
33. *Helvella acetabulum* (L.) Quél. – 4 (SD, 2004), 7 (MM & MA, 1996, 2x)
34. *Helvella crispa* (Scop.) Fr. – 7 (MM & MA, 1996, 2x), 14 (SD, 2002; SD, 2005), 17 (TA, 1994; RP, 1996; SD, 2003), 23 (IA & RP, 1996)
37. *Helvella monachella* (Scop.) Fr. – 17 (TA, 1995)

Morchellaceae
43. *Pychoverpa bohemica* (Krombh.) Boud. – 21 (TA, 1994)
44. *Verpa conica* (O.F. Müll.) Sw. – 19 (RP, 1985)

Pezizaceae
47. *Peziza echinospora* P. Karst. – 10 (RP, 1990)

Pyronemataceae
52. *Otidea alutacea* (Pers.) Massee – 8 (SD, 2005)
55. *Scutellinia umbrorum* (Fr.) Lambotte – 24 (JM & SA, 1996)

Sarcoscyphaceae

Sarcosomataceae
58. *Urnula craterium* (Schwein.) Fr. – 26 (SD, 2007)

Tuberaceae
59. *Tuber aestivum* Vittad.
60. *Tuber brumale* Vittad.

LEOTIOMYCETES

Erysiphales

Erysiphaceae

64. *Erysiphe convolvuli* var. *convolvuli* DC. – 23 (SD, 2011) (host: *Convolvulus arvensis*)
71. *Phyllactinia guttata* (Wallr.) Lév. – 23 (SD, 2011) (host: *Syringa vulgaris*)
72. *Sawadaea bicornis* (Wallr.) Homma (host: *Acer platanoooides*) – 10 (SD, 2011)

Helotiales

Dermataceae

73. *Marssonina brunnea* (Ellis & Everh.) Magnus – 2 (SD, 2011)
74. *Marssonina salicina* Tehon – 2 (SD, 2011)
75. *Mollisia cinerea* (Batsch) P. Karst. – 17 (SD, 2007)

Bulgariaceae

77. *Holwaya mucida* (Schulzer) Korf & Abawi – 16 (SD, 2007), 10 (SD, 2008)

Helotiaceae

78. *Hymenoscyphus calyculus* (Sowerby) W. Phillips – 10 (KI, 1989)

Hyaloscyphaceae

80. *Arachnopeziza aurata* Fuckel – 10 (SD, 2007)
81. *Lachnellula subtilissima* (Cooke) Dennis – 13 (SD, 2007)
82. *Lachnum virgineum* (Batsch) P. Karst. – 17 (SD, 2007), 5 (SD, 2007)
83. *Pezizella alniella* (Nyl.) Dennis – 17 (SD, 2009)

Incertae sedis

84. *Ascocoryne cylichnium* (Tul.) Korf – 6 (SD, 2008)

Leotiaceae

Rustroemiaceae

89. *Rustroemia bolaris* (Batsch) Rehm – 17 (SD, 2009)

Sclerotiniaceae

91. *Dumontinia tuberosa* (Bull.) L. M. Kohn – 10 (SD, 2007)

Rhytismatales

Rhytismataceae

92. *Propolis farinosa* (Pers.) Fr. – 5 (SD, 2007)

93. *Rhytisma acerinum* (Pers.) Fr. – 10 (SD, 2011)

ORBILIOMYCETES

Orbiliales

Orbiliaceae

94. *Orbilia sp.* – 17 (SD, 2007)

SORDARIOMYCETES

Coronophorales

Chaetosphaerellaceae

95. *Chaetosphaerella phaeostroma* (Durieu & Mont.) E. Müll. & C. Booth – 25 (SD, 2007)

Hypocreales

Clavicipitaceae

96. *Claviceps purpurea* (Fr.) Tul. – 24 (SD, 2008)

Nectriaceae

100. *Nectria coccinea* (Pers.) Fr. – 10 (SD, 2007)

101. *Nectria peziza* (Tode) Fr. – 12 (SD, 2007)

Incertae sedis

Xylariales

Diatrysaceae

103. *Eutypella scoparia* (Schwein.) Ellis & Everh. – 17 (SD, 2007)

104. *Diatrype disciformis* (Hoffm.) Fr. – 1 (SD, 2005), 16 (MM & JM, 1996), 28 (JM, 1996)

Xylariaceae

Species presented in this checklist were collected from 28 different localities (Fig. 1). The most thoroughly investigated localities were Iriški venac (33 species recorded) and Paragovo (30), Paparatski do (15), Glavica (14), Stražilovo (14), Sr. Kamenica (12), and Popovica (11).

List of Myxomycota known in Serbia, compiled by Ivančević (2010), contains 92 species collected mostly in central and southern parts of country. Our contribution to the knowledge of Myxomycota diversity in Serbia, with 23 species listed in this paper is modest but valuable. Additional significance lies in the fact that so far no data were published for the region of Fruška Gora. Furthermore, two species (Stemonitis herbatica and Arcyria pomiformis) were new in Serbia when compared to Ivančević records (2010).

The only data from surrounding countries available to us (concerning Myxomycota) were those from Austria, Bulgaria, and Turkey (http://www.austria.mykodata.net; Fakirova et al., 2000; Sesli and Denchev, 2009). When we compared recorded Myxomycota species of Fruška Gora with those in Austrian Fungi Database, only three were common to both lists: Dictydiaethalium plumbeum with 15 records, Hemitrichia serpula with 76 records,
and Tubifera ferruginosa, (syn: Stemonitis ferruginea Ehrenb) with only one record. In the published checklist of Bulgarian side of mountain Stara planina (Central Balkan Mountain) 18 species and 7 genera of Myxomycota were listed. Like in our records, Lycogala epidendrum was the most abundant, which is predictable since this species has cosmopolitan distribution (Stephen-son et al., 2000). In the Turkish national fungal checklist 222 species of Myxomycota are noted within only 41 genera. Diversity of genera of Myxomycota in our checklist (15) was high when compared to the number of recorded species (23). Following of our data were in accordance with the Turkish checklist: Ceratiomyxa fruticulosa was the only species in the class Protosteliomycetes, Lycogala epidendrum was the most abundant species, and Stemonitidaceae was one of the dominant families. Species from our checklist which had no records in Turkey were Dictydiaethalium plumbeum, Hemitrichia serpula, and Tubifera ferruginosa. These species have wide distribution in both northern and southern hemisphere (http://data.gbif.org) hence these records could not be explained by the regional differences.

In the Database for Fruška Gora mountain, fungi belonging to the phylum Ascomycota are not as numerous as those of the phylum Basidiomycota – 108:443 (unpublished data). It seems that representatives of this large division of fungi are often overlooked during field investigations, due to their size or specific interest of investigators, and therefore neglected in checklists. In addition, Bulgarian checklist has 42 Ascomycota species and 319 Basidiomycota for the Central Balkan Mountain (Fakirova et al., 2000). Turkish checklist contains 152 species of Ascomycota and 1822 species of Basidiomycota. In comparison with these data that relate to whole country territory, number of Ascomycota reported for the region of Fruška Gora mountain is significant. The most abundant species were Xylaria polymorpha (17 records), Xylaria hypoxylon (14 records), and Sarcoscypha coccinea (14 records); they are widely distributed and dominating species in others checklists and databases (Ivančević, 1996; Fakirova et al., 2000; Dimitrova and Gyosheva, 2009; Sesli and Denechev, 2009; http://www.austria.mykodata.net).

Among the species of Ascomycota recorded on Fruška Gora mountain, Morchella vulgaris (morel) and Tuber aestivum (summer truffle) are on the list of wild species protected by law in Serbia (The Regulation on designation and protection of strictly protected and protected wild species of plants, animals and fungi); Tuber aestivum is also on the list of wild species protected from collecting activities, use, and trafficking (The Regulation on putting under control the use and trade of wild flora and fauna) (http://www.ekoplan.gov.rs/src/1-2-Pravilnici-288-document.htm). Ptychoverpa bohemica (DD) and Verpa conica (NT) are included in preliminary Red-list of Serbia (Ivančević, 1998).

CONCLUSION

Database of Fungi in Fruška Gora Mountain includes 574 species of fungi (Ascomycota, Basidiomycota) and fungal analogues (Myxomycota), containing
over 2,000 records. Undoubtedly, these records represent just a part of total diversity of fungi in Fruška Gora and it is expected that the number of species should rise as the research continues and gets more organized. Many of the valuable, unknown, data are in the hands of hobbyists, enthusiasts from mycological societies and unknown individuals who spend the most time in nature and have a great passion, knowledge, and experience in field mycology. Future work on this Database should include them as well, of course with the guidance of professionals.

In conclusion, it should be stressed out that joint action and creation of integrated database of fungi is the first step on the way to better understanding of fungal distribution and population, which could result in a future protection of these unique organisms in Serbia and surrounding countries. Natural and semi-natural ecosystems are an indispensable basis for the conservation of biological diversity; it provides us with important data about living organisms that would be lost if these ecosystems were destroyed or converted to intensive use. This work supports and advocates further investigation of fungi in our region in the future.

REFERENCES

Austrian Mycological Society (2009): Database of fungi in Austria. Edited by Dämon, W., Hausknecht, A., Krisai-Greilhuber, I. – [http://www.austria.mykodata.net] [Date of visit resp. access to database].

ПРЕЛИМИНАРНА ЛИСТА ГЉИВА ФРУШКЕ ГОРЕ – РАЗДЕЛИ МУХОМУСОТА И АСКОМУСОТА

Маја А. Караман1, Милана С. Новаковић1, Драгиша Савић2, Милан Н. Матавуљ1

1Универзитет у Новом Саду, Природно-математички факултет, Департман за биологију и екологију, Трг Доситеја Обрадовића 2, 21 000 Нови Сад, Србија
2Национални парк Фрушка гора, Змајев трг 1, 21 208 Сремска Каменица, Србија

Резиме

Фрушка гора представља важан извор природних и полуприродних шумских екосистема у северном делу Србије, а самим тим и важан извор станишта за различите групе гљива. За разлику од добро организованих пројеката инвентаризације и мониторинга гљива који се већ дуго спроводе у већини европских земаља, миколошка истраживања у Србији су још увек спорадична и недовољно координисана од стране професионалних миколога. Циљ овог рада је био да се прикупе и у виду листе представе сви релевантни подаци о присуству гљива из раздела Myxomycota и Ascomycota на Фрушкој гори. У представљеној листи налазе се 23 врсте Muxomycota, распоређене у оквиру 2 класе, 5 редова и 7 породица. Прва класа (Protosteliomycetes) представљена је свега једном врстом – Ceratiomyxa fruticulosa (фам. Ceratiomyxaceae). Ред Trichiales је најзаступљенији (9 врста), а Stemonitidaceae и Trichiaceae су доминантне породице, свака са по 6 забележених врста. Најзаступљенија врста је Lycogala epidendrum (фам. Reticulariaceae), са 13 налаза. Раздео Ascomycota је представљен са 95 врста које су сврстане у 6 класа, 12 редова и 29 породица. Најзаступљеније класе су Leotiomycetes (са 32 врсте) и Pezizomycetes (са 31 врстом). Најзаступљеније врсте овог раздела су: Xylaria polymorpha (17 налаза), Xylaria hypoxylon (14 налаза) и Sarcoscypha coccinea (14 налаза).

КЉУЧНЕ РЕЧИ: Ascomycota, база података, гљиве, листа, Muxomycota, Фрушка гора

ACKNOWLEDGEMENTS

This study was carried out within the Project III-43002, supported by the Ministry of Science of the Republic of Serbia.
ABSTRACT: Conservation and protection of fungi have lately been considered as extremely important elements of the environmental conservation, and numerous environmental, scientific, medical, economic, cultural, ethical, and other reasons for such attitude exist today. This paper presents an overview of official regulations on the protection of fungi in the Republic of Serbia from the Act of Protection of 1991 until today. The paper lists and analyses the good and bad provisions of individual legal regulations. It registers the effects of the adopted regulations on the actual efficiency of protection of endangered species of fungi (macrofungi, mushrooms), and considers the impact of chronological development of legislation on the population of fungi in nature, and presents general measures to improve protection of mushrooms in the future. These measures primarily include reliable information and study of fungi as a basis for their effective protection based on scientific knowledge.

KEY WORDS: conservation, fungi, legal regulations, protection, Republic of Serbia

INTRODUCTION

The study of fungi and awareness of their unique position and ecological role in the environment came late as compared to plants and animals, although fungi comprise a very large and important group of organisms. It was not until the seventies of the twentieth century that it was finally accepted that they represented a separate group of organisms, taxonomically set aside in a separate Kingdom, and that they were substantially different from the plants with which they were usually grouped, as well as from the animals.

The ability to decompose dead organic matter and form symbiotic relations with a large number of vascular plants and parasitic species are dominant features of fungi that enable them to survive and to participate in their environment forming terrestrial ecosystems. Estimates indicate that between
no less than 85% species (Kirk et al., 2001) and as many as 95% (Brown, 1991) plant species form mycorrhiza with fungi. In the process of matter cycle, fungi are the dominant group capable of decomposing lignin and cellulose from plant residues, allowing the recycling of plant material and its re-usage in the biocenosis. Without the fungi in the forest, the masses of fallen leaves and dry branches would bury trees to the crowns in a relatively short time, and life would become impossible.

The notion that fungi were threatened, just as many other organisms on our planet, and that there was a risk of reduction of their numbers and disappearance of some of their species came late. It was only in the second half of the last century, during the 70-ies, that a trend of decrease in their numbers or even disappearance of some fungi species was noticed and reported, especially those related to complex and well-preserved ecosystems (Jensen & Lawronicz, 1991). Also observed at the time was a decrease in the number of species that were collected for food from nature. In the late eighties, after numerous reports of threats, international initiatives were launched to preserve mushrooms and subsequently the European Council for Conservation of Fungi – ECCF was formed. At that time, there already existed fully-fledged organizations and movements for protection of animal and plant species.

Generally, it is considered that the main reasons for categorization of mushrooms into the group of threatened organisms are the disappearance and contamination of their habitats, primarily due to human activities, such as pollution of the atmosphere, industrialized agriculture, unfavorable forestry practice, and anthropogenic alterations of large areas. All those issues lead to the degradation of fungal habitats. In addition, it is believed that uncontrolled and excessive commercial mass collecting of edible wild mushrooms in the limited space has long-term negative effects.

After substantial knowledge of vulnerability of macromycetes was collected, fungi slowly began to be incorporated into the programs of nature protection in the last decade of the twentieth century. A framework of actions that will address their conservation was becoming more and more formal and was recognized by some states to a greater or lesser extent. The need to introduce some kind of control because of massive collecting of edible mushrooms was also recognized in the Republic of Serbia around that time. The first regulations formally treating the collecting and trading of edible mushrooms in the territory of Serbia were adopted, attempting to regulate issues in this field. This was not conservation of fungi in the full sense of the word and it did not include what is now primarily considered as conservation and protection, relating essentially to the rare and threatened species that are vulnerable to a greater extent. Instead, this protection related to the commercial edible species that are usually very numerous. Nevertheless, the state administration recognized the need to establish some limitations on exploitation of at least a part of the population of mushrooms.

Because the preservation of fungi is an extremely important field, and there are numerous environmental, scientific, health, economic and other reasons that support this view, this paper presents an overview of legal provisions, especially
those regarding the protection of fungi (macromycetes) in nature. The main objective of this paper is a chronological review of regulations on the protection of fungi and the examination of the effects of enacted regulations on the population of mushrooms and improving their conservation in the future.

Other regulations which deal with macromycetes very indirectly, such as laws on forestry, national parks and similar, which govern nature conservation in general, but do not explicitly mention mushrooms, have not been considered. Neither was considered the laws governing other fields related to fungi, such as regulations in food industry related to mushrooms, regulations on the protection of materials, medical or pharmaceutical and related aspects, and similar.

RESEARCH ON FUNGI AS A BASIS OF THEIR PROTECTION IN SERBIA

The vital requirement for the preservation of fungi or any other organisms is the awareness of the existing problems, their thorough study, updated and satisfactory taxonomic inventories, and ecological and chorological research. Although mycological research data were collected for about a century in the Republic of Serbia, it was done randomly and non-systematically, as a result of individual enthusiasm rather than a result of systematically conducted researches and these data were not sufficient for making well-grounded decisions and regulations on the protection and preservation of mushrooms (Ivančević, 1995).

Adequate protection of fungi can be established only when solid and reliable data are available, collected through systematic and long-term scientific studies. It is therefore necessary to make substantial investment in prior fundamental mycological research. Another necessary requirement for determining the state of endangered fungi is monitoring, specifically, monitoring of population size, their abundance, diversity, and distribution over a continued long period, using standardized methodology. Based on all data collected, a Red List of threatened fungi can be formed, preferably by using the generally accepted IUCN classification (IUCN, 2001). On the other hand, it is not wise to put off protective measures until such time as the optimum level of knowledge of mushrooms is reached (Ivančević, 2001). Rather, general feasible measures ought to be taken based on general knowledge and experience from similar territories, relying on a greater experience and more researches (Matavulj et al., 1998; Matavulj and Karaman, 2004).

Although the first data for a Red List of threatened mushrooms were published long ago (Ivančević, 1993) and the first preliminary Red List of Serbian fungi was published by the end of the last century (Ivančević, 1998), the opportunity to obtain for the Red List the status of an official, scientifically verified document that could be a basis for establishment and implementation of appropriate measures to preserve and protect fungi, has not been used in Serbia. In addition, a list of macromycetes was published that have the status of globally significant species in the territory of Serbia. The Serbian state has a special responsibility for these species, even though they are not endangered to a significant degree in the territory of Serbia (Ivančević, 1995).
MATERIAL AND METHODS

For the overview of legal regulations on the protection of fungi in the Republic of Serbia, the legal provisions of the Republic of Serbia (laws and other regulations) relating to environmental protection were used:

- Одлука о стављању под заштиту биљних врста као јриродних реткости. Службени гласник Социјалистичке Републике Србије 11, 17. 03. 1990; [Decision on putting plant species under protection as natural rarities, 1990]
- Одлука о изменама и дојунама одлуке о стављању под заштиту биљних врста као јриродних реткости. Службени гласник СРС 49, 15. 08. 1991; [Decision on amending the decision on putting plant species under protection as natural rarities, 1991]
- Уредба о заштити природних реткости; Службени гласник Републике Србије 50, 09. 07. 1993; [Regulation on the Protection of Natural Rarities, 1993]
- Наредба о стављању под контролу коришћења и јромења дивљих биљних и животињских врста. Службени гласник Републике Србије 16, 05. 04. 1996. и 44/1996; [Directive on control of use and trade of wild plant and animal species, 1996]
- Наредба о стављању под контролу коришћења и јромења дивљих биљних и животињских врста. Службени гласник Републике Србије 17, 07. 04. 1999; [Directive on control of use and trade of wild plant and animal species, 1999]
- Convention on the Conservation of European Wildlife and Natural Habitats – the Bern Convention (Republic of Serbia has signed and ratified this convention on 9 January 2008 and it began to be implemented from May 1 2008)
RESULTS AND DISCUSSION

LEGISLATIVE AND REGULATIVE ANALYSIS

Under the amendments to the Decision on putting plant species under protection as natural rarities (1990) based on Nature Conservation Law (1988), the following mushrooms have been listed as protected species since 1991: *Boletus edulis*, *Pleurotus ostreatus*, *Cantharellus cibarius*, all species of genera: *Morchella*, *Agaricus*, and *Lactarius*.

Environmental Protection Law (1991) does not include fungi. Furthermore, Regulation on the Protection of Natural Rarities (1993) does not include fungi, too.

Directive on control of use and trade of wild plant and animal species (1993) – mushroom species placed under control (protected): all species of *Morchella* and *Lactarius* genera, all edible species of the genus *Agaricus*, *Cantharellus cibarius*, *Craterellus cornucopioides*, *Boletus edulis*, *Amanita caesarea*, *Pleurotus ostreatus*, *Bovista nigrescens* and *Bovista plumbea*.

Directive on control of use and trade of wild plant and animal species (1996) – mushroom species placed under control (protected): all species of *Morchella* and *Lactarius* genera, all edible species of the genus *Agaricus*, *Cantharellus cibarius*, *Craterellus cornucopioides*, *Boletus edulis*, *Amanita caesarea*, *Pleurotus ostreatus*, *Bovista nigrescens* and *Bovista plumbea*.

Environmental Protection Law (2004) and Regulation on putting the use and trade of wildlife under control (2005) – Under the latest amendments to this Regulation from 2010, the following species of mushrooms are protected by being placed under control: *Boletus aereus*, *Boletus reticulatus*, *Boletus edulis*, *Boletus pinophilus*, *Cantharellus cibarius*, *Craterellus cornucopioides*, *Lactarius deliciosus*, *Lactarius deterrimus*, *Lactarius salmonicolor*, *Lactarius sanguifluus*, *Lactarius semisanguifluus*, *Marasmius oreades*, *Tuber magnatum* and *Tuber aestivum*.
Nature Conservation Law (2009) and Regulation on the proclamation and protection of strictly protected and protected wild species of plants, animals and fungi (2010) – list of strictly protected and protected fungal species:

Strictly protected fungal species:

<table>
<thead>
<tr>
<th>Albatrellus ovinus</th>
<th>Geastrum schmidelii</th>
<th>Myriostoma coliforme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amanita vittadini</td>
<td>Hapalopilus croceus</td>
<td>Panaeolus semiovatus</td>
</tr>
<tr>
<td>Battarrea phalloides</td>
<td>Hericium alpestre</td>
<td>Phallus hadriani</td>
</tr>
<tr>
<td>Boletus dupainii</td>
<td>Hericium cirrhatum</td>
<td>Phylloporus rhodoxanthus</td>
</tr>
<tr>
<td>Boletus impolitus</td>
<td>Hericium coralloides</td>
<td>Podocympha multizonata</td>
</tr>
<tr>
<td>Boletus regius</td>
<td>Hericium erinaceus</td>
<td>Polyporus umbellatus</td>
</tr>
<tr>
<td>Boletus rhodoxanthus</td>
<td>Hygrocybe calyptriformis</td>
<td>Psilocybe serbica</td>
</tr>
<tr>
<td>Boletus satanas</td>
<td>Hygrocybe coccineocrenata</td>
<td>Pycnoporellus alboluteus</td>
</tr>
<tr>
<td>Catathelasma imperiale</td>
<td>Hygrocybe punicea</td>
<td>Rhodotus palmatus</td>
</tr>
<tr>
<td>Entoloma bloxami</td>
<td>Hygrophorus marzuolus</td>
<td>Sarcosphaera coronaria</td>
</tr>
<tr>
<td>Fomitopsis rosea</td>
<td>Leccinellum crocipodium</td>
<td>Scutiger pes-caprae</td>
</tr>
<tr>
<td>Geastrum fornicatum</td>
<td>Leucopaxillus giganteus</td>
<td>Strobilomyces strebilaceus</td>
</tr>
<tr>
<td>Geastrum melanocephalum</td>
<td>Mutinus canninus</td>
<td></td>
</tr>
</tbody>
</table>

Protected fungal species:

<table>
<thead>
<tr>
<th>Amanita caesarea</th>
<th>Craterellus cornucopioides</th>
<th>Morchella elata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boletus aereus</td>
<td>Hydnum repandum</td>
<td>Morchella esculenta</td>
</tr>
<tr>
<td>Boletus edulis</td>
<td>Hygrophorus russula</td>
<td>Morchella vulgaris</td>
</tr>
<tr>
<td>Boletus pinophilus</td>
<td>Lactarius deliciosus</td>
<td>Russula cyanoxantha</td>
</tr>
<tr>
<td>Boletus reticulatus</td>
<td>Lactarius deterrimus</td>
<td>Russula virens</td>
</tr>
<tr>
<td>Cantharellus amethysteus</td>
<td>Lactarius salmonicolor</td>
<td>Tuber aestivium</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>Lactarius sanguifluus</td>
<td>Tuber macrosporum</td>
</tr>
<tr>
<td>Cantharellus cinereus</td>
<td>Lactarius semisanguifluus</td>
<td>Tuber magnatum</td>
</tr>
<tr>
<td>Cantharellus friesii</td>
<td>Marasmius oreades</td>
<td></td>
</tr>
</tbody>
</table>

A review of the existing regulations may provide an insight into a few basic trends that have determined the approach to protection of fungi in Serbia. On one hand, the need to protect certain species of mushrooms was recognized in Serbia relatively early, already in the late eighties of the twentieth century. The rapid growth of interest in edible wild mushrooms led at that time to a significant increase of economic investments and financial flows related to the activities of organized collecting and purchase of wild mushrooms. For a while, the then Yugoslavia was the world’s largest exporter of bolete mushrooms, a large share of which was collected in the territory of Serbia. There was a legitimate concern that the uncontrolled collecting of mushrooms in large quantities may lead to a decrease in their number and to their vulnerability.

On the other hand, the interest of the state administration was to place collecting of wild mushrooms under control in order to raise funds from the trade of wild mushrooms. Although there were expert draft proposals relating
primarily to fungi protection, that included, among other things, limiting the allowable amount that an individual can collect daily, mushroom pickers licensing, supervision of the amount of collected carpophores (fruiting bodies) and other measures that would enable monitoring of populations of macrofungi and their effective protection, they were not included in the adopted legislations. When they were eventually included, it was in a modified form or without tools that could enable control of their application. The role of the adopted measures was primarily to ensure a regular payment of taxes for the mushroom wholesale trade, and initially, to provide more favorable conditions of mushroom wholesale to the companies from Serbia by limiting administratively the maximum purchase price for the collected mushrooms. Thus the companies outside of Serbia were no longer able to offer a higher purchase price and thus obtain priority in wholesale. Allegedly, the low purchase price was supposed to make the picking of wild mushrooms unprofitable, and thus protect them from over-exploitation. Despite the early expressed concern for the protection of fungi, the precautionary protection measures turned out to be ineffective.

Based on the Nature Conservation Law from 1988, certain species of fungi were for the first time placed under protection in 1991, as “natural rarities threatened by exploitation and trade”, under the Decision on amending the decision on putting plant species under protection as natural rarities (1991). In addition to a completely inadequate formulation of “natural rarities,” comprising the species that were collected on a large scale for commercial purposes, mushrooms were considered as a plant species. The taxonomic nomenclature of these mushroom species contained grave mistakes. The regulation provided for two measures of fungi protection, including a ban on collecting young and under-developed fruiting bodies and a ban of harvesting more than 90% of a “total number” in the area of picking. In addition, it stipulated that mushroom collecting should not be performed at the waste dumping sites and near traffic junctions, which was supposed to protect the users of the collected mushrooms.

Measures aimed at control of mushroom collecting included an approval issued by the Serbian Institute for Environmental Protection subject to payment of an appropriate tax, and the obligation on part of the purchaser of wild mushrooms (legal or natural person) to submit data on purchased quantities of mushrooms to the Institute. Optionally, Article 4 of the Decision envisaged, in respect of the fungi listed as natural rarities, that “a program of protection and development will be adopted which will establish conditions for complete information and popularization of the protected natural rarities.” It was not envisaged how to implement the control of two proposed measures of fungal protection, and expert proposals that involved additional measures of protection were not included in the regulations. However, even this flawed document was useful in terms of raising general awareness that mushrooms have the importance and place in the living world and that we cannot use them as an inexhaustible natural source without any restrictions.

After the Nature Conservation Law (1988), the Government of the Republic of Serbia adopted the Environmental Protection Law in 1991. This Law governed the protection of threatened plant and animal species that were still
designated as “natural rarities,” which was an inadequate definition largely criticized by environmentalists and scientists who were experts on endangered species. Based on this Law from 1991, the Regulation on the Protection of Natural Rarities (1993) was adopted, but, unfortunately, the endangered species of fungi were not included, and their protection was omitted, although at that time there already existed data on the species of fungi that were endangered in Serbia (Ivančević, 1993).

Mushrooms were still perceived in our public as a less important part of the plant kingdom and their unique and important role in nature was not understood. Based on Environmental Protection Law (1991), only the Directive on control of use and trade of wild plant and animal species (1993) was adopted, which included commercial species and largely reiterated the provisions of the previous Decisions on control of trade from 1991, perhaps otherwise phrased. Thus instead of the earlier ban on harvesting more than 90% of the existing specimens, the Directive provided that 10% of existing fruiting bodies was not allowed to be collected. The only novelty was Article 7, providing that the collecting may not be done in the same area every year and that a period of at least one year had to elapse before collecting may be resumed in the same area. However, the implementation of that provision was not mandatory if it was estimated that there was no need for such a measure. Unfortunately, there were no criteria and instruments for objective assessment. The list of included species was somewhat extended due to the interest to enable commercial collecting of species not covered by the previous Decision. Some of the errors in the nomenclature of these species were fixed but some still existed, which indicated a lack of cooperation of legislators and experts mycologists.

New Directive on control of use and trade of wild plant and animal species from 1996 brought nothing new and reiterated the earlier positions. The term “individual mushrooms” (in Serbian “јединке гљива”) was wrongly and consistently replaced by the term “identical mushrooms” (in Serbian “једнаке гљиве”) in several places, so Article 5. became confusing and meaningless. The provision about leaving a number of fruiting bodies in nature no longer specified the exact amount.

That was the time of the biggest disparity between the inadequate legal protection and the enormous pressure on nature and mushroom habitats, which became seriously endangered due to mass collecting of commercial species and numerous negative or indirect consequences of such collecting, including permanent removal of mushroom fruiting bodies from certain areas, soil compacting, intentional destruction of all other mushroom species, littering and pollution of the environment (Ivančević, 1998b). The trade control included only fresh mushrooms while dried and processed mushrooms were not controlled and were exported to the Western markets in large quantities. Young immature specimens of bolete mushrooms, whose collecting was formally forbidden, were exported in brine. Table 1 shows quantities of some of the species that were traded in that period, based on the data from the Ministry for the environment.

Due to the alarming situation with the protection of fungi in Serbia, which was similar to that in some other countries of Southeast Europe, the European
Council for the Conservation of the Fungi expressed its concern at the meeting in 1997 in Vipiteno, Italy, and it was scheduled to hold an international scientific symposium ECCF at Tara Mountain in Serbia on 22-27 September 1998, with the participation of experts from Serbia. This meeting was cancelled at the last minute because of concerns of some participants because of the armed conflict in Kosovo, which escalated in that time. After the 1999 war, and the turbulent social upheaval that followed, ECCF offered an official advisory support to the Government of the Republic of Serbia in 2001, through the Directorate for Environmental Protection of the then Ministry of Health and the Environment (Anders Bohlin in lit.), but that offer was not accepted.

Tab. 1. – The quantities of mushrooms collected in the Republic of Serbia during 1993-1997

<table>
<thead>
<tr>
<th>Year</th>
<th>Boletus edulis</th>
<th>Cantharellus cibarius</th>
<th>Craterellus cornucopioides</th>
<th>Morchella spp.</th>
<th>Lactarius spp.</th>
<th>Amanita caesarea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requested</td>
<td>Allowed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>9 769 200</td>
<td>5 778 300</td>
<td>?</td>
<td>963 570</td>
<td>115 000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5 186 100</td>
<td>2 605 500</td>
<td>?</td>
<td>36 610</td>
<td>63 000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 500 000</td>
<td>2 000 000</td>
<td>?</td>
<td>?</td>
<td>60 000</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>1 212 981</td>
<td>631 004</td>
<td>18 800</td>
<td>1 800</td>
<td>40 000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 212 981</td>
<td>631 004</td>
<td>18 800</td>
<td>1 800</td>
<td>40 000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 500 000</td>
<td>2 000 000</td>
<td>?</td>
<td>?</td>
<td>60 000</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>3 792 036</td>
<td>1 502 027</td>
<td>119 200</td>
<td>2 520</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5 000 000</td>
<td>3 000 000</td>
<td>100 000</td>
<td>15 000</td>
<td>100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>1996</td>
<td>3 948 682</td>
<td>1 192 950</td>
<td>65 550</td>
<td>1 130</td>
<td>60000</td>
<td>5 000</td>
</tr>
<tr>
<td>1997</td>
<td>5 000 000</td>
<td>1 500 000</td>
<td>100 000</td>
<td>2 000</td>
<td>300 000</td>
<td>5 000</td>
</tr>
</tbody>
</table>

Legend: In 1993 and 1994, buyers applied for amounts of mushrooms for purchase (“Requested”) and based on such applications they were allowed the maximum amount they could purchase from individual collectors (“Allowed”). The allowed amounts were determined based on the assessment after all applications were submitted. From 1995 onward, a competition was opened for the maximum amount of mushrooms that can be collected that year, determined in advance, at the very beginning of that year (“A priori”). The total amount that buyers were actually requesting was calculated at the end of the year (“Approval issued for”). Buyers were paying for the license for purchase regardless of whether or not they collected the requested amount of fungi. ? = Missing data.

In the meantime, because of many signals pointing to a bad situation of endangered mushrooms, in late 1998 in Serbia started work on new documents that were supposed to provide adequate protection for the commercial species of mushrooms, as well as for other species of fungi that were endangered. Therefore, some edible species that were relatively rare were planned to be included in the list of the endangered fungi, which, however, could be collected commercially, subject to a prior estimate and evaluation. As result, Directive on control of use and trade of wild plant and animal species (1999) was issued during the war and the devastating bombardments of Serbia by the NATO. That was the first document to list fungi separately from the plants. The nomenclature of species’ names was corrected. Finally, some provisions
on how to protect endangered species were included in the text – the way of picking, keeping accurate records of the amounts of collected mushrooms. Unfortunately, it was not done in the form proposed by the consulted mycologists, thus Article 8 prescribed that the “…fruiting bodies should be collected in the container that allows ventilation for dissemination of the spores.” Proper packaging serves for conserving the quality of harvested mushrooms, and dissemination of spores during transport is a phenomenon that, in our opinion, does not affect the protection of mushrooms*.

This provision was copied from the regulations of the countries in the region that were published at that time (P i r m a n, 1994), probably due to a lack of understanding of foreign experience on part of the lawgivers. Furthermore, the form of the approved quantities of wild mushrooms that were allowed to be collected was specified for the first time, i.e. whether they were fresh or dried mushrooms (weight ratio 10:1). The reports on the collected amounts were required for the first time to indicate the site where the mushrooms were picked and to keep track of collected quantities of protected species for monitoring purposes. Consequently, this regulation finally brought some positive changes, though not all that was needed. (Earlier, the purchaser had to provide general information on the amounts collected and sold). Picking more than 66% (two thirds) fruiting bodies in the area of collecting was prohibited. Members of the genus Morchella were no longer among the protected species, since they were intended to be covered by other regulations on endangered species. However, the state of war and subsequent social changes delayed the adoption of such regulations for a decade.

The actual Environmental Protection Law was adopted in 2004 and based on this Law a new Regulation on putting the use and trade of wildlife under control (2005) was passed. Positive innovations in this Regulation included the provisions on the procedures for collecting hypogeal species of mushrooms, as well as inclusion of two species of genus Tuber in the list of protected mushrooms. This Regulation without significant alterations applies even today. The unnecessary provision on packaging related to ventilation to enable spore dissemination still exists in the text, which shows how difficult it is for mycologists to exert influence on lawmakers.

The actual Nature Conservation Law, (2009), the first since 1988, was adopted in 2009. This Law introduced many new solutions, because of the desire to be aligned with the EU regulations. Article 59 defined which parts of that law, currently inactive, would begin to apply upon the accession of the Republic of Serbia to the European Union. Mushrooms were listed as a separate group of organisms, different from and on a par with plants and animals. Under Article 27, protected natural goods also included protected species, which could have the status of a protected or a strictly protected species. Protection measures for strictly protected species finally allowed inclusion of rare and endangered species of wild mushrooms, in addition to the commercial

* Packaging that allows dissemination of spores was referred to in the first version of Slovenian regulation on protection of wild mushrooms from 1994 (Uradni list RS 38/94) but was excluded from the text in the next version of 1998 (Uradni list RS 57/98).
species. A large number of Articles of the Law provided for the protection of species’ habitats, as the necessary requirement of protection of the very species. This allowed introduction of new, more effective conservation measures. Regulation on the proclamation and protection of strictly protected and protected wild species of plants, animals and fungi (2010) was published in accordance with this Law. The list contained 38 strictly protected fungi and 26 protected fungal species. It was not ensured, in accordance with the Law, that the lists of protected species should be formed based on the Red List, or well-documented studies, instead, the species were defined arbitrarily, in a very short time, which later resulted in problems and criticism of experts for certain groups of organisms.

The Nature Conservation Law (2009) provided for the protection and preservation of nature, previously was governed by the still applicable Environmental Protection Law (2004). Therefore, with regard to wild mushrooms, this led to parallelisms and inconsistencies. The Regulation on the Control of Trade (2005) has a “senior” position and originates from an earlier period than the Regulation on Protected Species (2010), and provisions of these regulations do not refer one document to the other. The Environmental Protection Law (2004), which was used for preparing the Regulation on putting the use and trade of wildlife under control (2005), does not recognize the new Nature Conservation Law (2009) as it was accepted much earlier. The Nature Conservation Law (2009) does not include ordinances from the Regulation on putting the use and trade of wildlife under control (2005) which was prepared according to the older Environmental Protection Law (2004), so one subset of species protection is regulated according to the old Environmental Protection Law (2004) and another by the new Nature Conservation Law (2009). In this way both laws are broken by the same activity but the supervising inspection services are not having any evidence. The nomenclature of scientific names in these two laws is different, as well as some of the vernacular names used for the same species in the simultaneously applicable regulations prepared according to these different laws.

In addition to domestic legislation, there are obligations originating from the international conventions signed by Serbia that have obligatory character. The Bern Convention, which protects the flora, fauna and habitats of species in Europe, came into force in Serbia in mid 2008. Mushrooms have not yet been officially included in the lists of species covered by the Bern Convention, primarily for administrative and political reasons, and their protection under the provisions of the Bern Convention is not mandatory in Serbia. The list of fungal species that have been proposed for inclusion in the Bern Convention is now in the form of an official proposal confirmed by the Standing Committee of the Bern Convention. On this basis, the Council of Europe adopted a Recommendation on the conservation of wild mushrooms in Europe whose implementation by signatory countries is desirable (Recommendation 132; 2007).

The Recommendation invited the countries to define management and maintenance of habitats as a priority with the aim of protecting the European species of mushrooms; to take into account the Directive of the European Council to protect European macromycetes and to apply it when developing and
implementing their national policies to protect macromycetes; and to include those who have profit from wild mushrooms in the protection mushroom habitats. This presented a powerful tool for correction of national legislation, relating to the protection of the wild mushrooms. Unfortunately, the public, experts as well as competent authorities and institutions are poorly acquainted with this Recommendation that applies to the Republic of Serbia as well. In the first half of 2011, the Council of Europe demanded a national report on the implementation of this recommendation, and this was the first opportunity to analyze the contribution of and the possibilities of acting in accordance with the Recommendation in Serbia.

A project for making a revised version of the Red List of fungi, with a detailed evaluation of their vulnerability factors, was offered to the state authorities in 2007 (Ivančević, et al., 2007), but its implementation has not been approved so far. Meanwhile, Article 36 of the Nature Conservation Law (2009) provided that: “The species that are or may become endangered shall be protected as strictly protected wildlife, or protected wildlife. The species protected under this law shall be determined on the basis of national and international Red Lists or Red Books, professional findings and scientific knowledge.” The same Article provided that the Red Book or Red List may be adopted by the Ministry of Environmental Protection. Consistent application of these legal provisions, once they are enforced, should provide a scientific basis for protection measures and help align Serbian legislation with the legislation of the countries that have had more developments in this field.

CONCLUSION

The first regulations on the protection of fungi in Republic of Serbia were adopted in 1991. They were related to several edible wild species that were collected for commercial purposes. The aim of adopted measures was protection of wild mushrooms against excessive collecting and the threat that it might bring, but in practice, they secured collecting of revenue for the state from the use and trade in wild mushrooms. Subsequently, during the last twenty years, new regulations were adopted several times, but only with minor changes, while the basic purpose remained the same, and provisions that would ensure protection based on advanced experience of other countries and on scientific data were not incorporated in the legislation, although it was possible. The initial positive effect of such regulations, which showed to the public the threat to wild mushrooms, was lost over the years, and even turned into the opposite, based on the opinion that when something was paid for (tax for collecting wild mushrooms) then it may be fully disposed of without much regard. The effect of the prescribed measures on wild mushroom protection was not significant and did not prevent the removal of huge amounts of fruiting bodies from nature in certain territories, accompanied with habitat disturbance and a number of harmful side effects.

The first major changes occurred with the adoption of the Law on Nature Protection in 2009, which finally placed under protection the rare and endan-
gered species of fungi and their habitats, in addition to the commercial species. Owing to the provisions of this Law, the first study was drafted with the aim of protecting an area exactly because it was a habitat of strictly protected species of wild mushrooms. The proposed protected area, located on Ada Ciganlija near Belgrade, had the size of 21 ha. At the time of submission of this paper to print, the procedure for official declaration of protection was in the final stage. Only a formal final decision on declaration was missing, which would make the Republic of Serbia one of the first countries in Europe to protect a fungal habitat, in accordance with the recommendations of the Bern Convention. Therefore, the application of these legal provisions is expected to bring developments to the adequate protection of fungi in the Republic of Serbia and to have a positive effect on populations of endangered species.

When the actual Nature Conservation Law (2009) and bylaws were adopted, the existing errors and omissions were not removed, and the legal provisions on the election and proclamation of protected species were not fully observed, therefore it is necessary to do so in the future. Other regulations should also be amended, especially the Law on Environmental Protection, and other regulations dealing with the protection of fungi. They should also be brought in line with one another. The evolution of legislation concerning wild mushroom protection in Serbia has become closer to the stage when acceptable and more effective modes of protection are being prescribed, but it took unnecessarily too long, and changes that would allow the optimum state of affairs are yet to be undertaken.

REFERENCES

Ivančević, B., Savić, S., Nikšić, M. (2007): Predlog projekta izrade Crvene liste gljiva Srbije i evaluacija faktora njihove ugroženosti. The project proposal of the preparation of

ГЉИВЕ У ЗАКОНОДАВСТВУ РЕПУБЛИКЕ СРБИЈЕ

Борис Н. Иванчевић1, Милан Н. Матавуљ2, Јелена Б. Вукојевић3, Маја А. Караман2

1 Природњачки музеј, Београд, 2 Природно-математички факултет у Новом Саду, 3 Биолошки факултет у Београду

Резиме

Очување и заштита гљива изузетно су важна област и за то постоје много-бројни еколошки, научни, здравствени, економски, културни и други разлози. Приказан је преглед прописа који се баве заштитом гљива у Србији, почев од акта заштите из 1991. Наведене су и анализиране добре и лоше одредбе појединачних прописа. Сагледани су ефекти донетих прописа на стварну ефикасност заштите угрожених врста гљива, проценио је какав утицај хронолошки развој законодавства има на популације гљива у природи и размотрене су опште мере ради пообилшавања заштите гљива у будућности. Те мере пре свега подразумевају добро познавање и проучавање гљива као основу за њихову ефикасну заштиту утемељену на научним сазнањима.

КЉУЧНЕ РЕЧИ: гљиве, законска регулativa, заштита, очување, Република Србија

ACKNOWLEDGMENTS

The authors are grateful to Mr. Nenad Sekulić, head of the Department of biodiversity of the Institute for Nature Protection of Serbia for assistance in obtaining archived regulations and for helpful suggestions.

This work is part of the OI-179 079 Project, supported by the Ministry of Education and Science of the Republic of Serbia.
ABSTRACT: In vitro cytotoxicity of methanol, ethyl acetate, n-buthanol, and water extracts of Myrtus communis L. and Eucalyptus camaldulensis Dehnh. was examined against two human breast cancer cell lines (MCF 7 and MDA-MB-231) using MTT and SRB assays. The results showed significant cytotoxic potential of examined extracts, with IC50 values ranging from 7 to 138 µg/ml for M. communis and 3-250 µg/ml for E. camaldulensis. The two plants generally expressed similar activity, and no significant difference in cell line’s sensitivity towards extracts was observed. The results indicate to M. communis and E. camaldulensis as candidates for thorough chemical analyses for identification of active compounds, and eventually for attention in the process of discovery of new natural products in the control of cancer.

KEY WORDS: cytotoxicity, Eucalyptus camaldulensis Dehnh., MCF 7, MDA-MB-231, Myrtus communis L.

INTRODUCTION

Molecules derived from natural sources, such as plants, play a dominant role in the discovery of conventional drugs for the treatment of most human diseases, and therefore represent a basis of modern medicine (Jones et al., 2006). A large number of plant extracts have been screened for cytotoxic effects against cancer cell lines over the last thirty years, which have resulted in some significant drugs being introduced. In addition, it was shown that some extracts are cytotoxic and selective, either between different cancer cell lines or between cancer and non-cancer cell lines, and act principally by inhibiting cell proliferation, but by different mechanisms (da Rocha et al., 2001).
Myrtus communis L. (myrtle) and Eucalyptus camaldulensis Dehnh., both belonging to the Myrtaceae family, grow throughout the Mediterranean region (Grbović et al., 2010; Mimica-Dukić et al., 2010). Myrtle’s leaves and fruit are traditionally used as antiseptic, disinfectant, and hypoglycemic agents (Elfellah et al., 1984). *M. communis* extracts have been confirmed to exhibit antimicrobial (Mansouri, 1999; Mansouri et al., 2001; Bugarin, 2010) and antioxidative effects (Bugarin, 2010; Tuberoso, 2010), while its essential oil showed considerable antioxidant and antimutagenic effects (Mimica-Dukić et al., 2010). It is prominent that myrtle plants could be a promising source of natural antioxidants, anti-genotoxic, antimutagenic and, perhaps, chemopreventive agents (Mimica-Dukić et al., 2010). Several species of *Eucalyptus* are also used in traditional medicine, and are reported as agents with analgesic, anti-inflammatory, and antimicrobial properties (Silva et al., 2003; Williams et al., 1998). Crude organic extract of *E. camaldulensis* has been proven to exhibit both antimicrobial and gastro-protective activities (Adeniyi et al., 2006), while its essential oil showed antibacterial, antioxidant and antimutagenic effects (Grbović et al., 2010). The presence of flavonoids and tannins, which are known to have antibacterial and antifungal properties, is confirmed in organic extracts of *E. globulus*, which in addition revealed antimicrobial activity (Egwakhide et al., 2008). However, anticancer activity of both *Myrtus* and *Eucalyptus* species has been poorly investigated, and their complete toxicity profile has yet to be determined.

In this study, the *in vitro* cytotoxicity of different extracts of *M. communis* and *E. camaldulensis* was examined against MCF 7 and MDA-MB-231 human breast cancer cell lines using MTT and SRB cytotoxicity assays.

MATERIALS AND METHODS

Plant material and preparation of extracts: Plant extracts were prepared from dry leaves of the species *Myrtus communis* L. and *Eucalyptus camaldulensis* Dehnh., collected at the Montenegro coastline (Tivat) in August 2004. Air-dried, finely ground leaves samples were extracted by maceration with 70% methanol (8 ml per 1 g of drug) during 48h at room temperature. After filtration, solvent was evaporated in vacuum; crude residue was dissolved in hot distilled water and washed exhaustively with petrol ether to remove ballast compounds (lipsids and pigments). A part of washed extract was concentrated in vacuum to dryness, and dissolved in DMSO giving final concentration of 10 mg/ml (“methanol extract”). The rest of the washed extract was partitioned with chloroform, ethyl acetate, and *n*-butanol, in order to obtain chloroform, ethyl acetate, *n*-butanol, and water soluble fractions. All of the fractions were concentrated in vacuum and dissolved in DMSO (10 mg/ml).

Cell culture and treatment: Plant extracts were evaluated for their *in vitro* cytotoxicity towards two human breast adenocarcinoma cell lines: MCF 7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative). Cell culturing and experimental procedure were conducted as previously de-
scribed (Jevtić et al., 2010; Karaman et al., 2009). The cells were grown in Dulbecco’s Modified Eagle’s Medium with 4.5% of glucose (DMEM, PAA Laboratories) supplemented with 10% fetal calf serum (FCS, PAA Laboratories) at 37°C in a humidified atmosphere containing 5% CO2. Cells were seeded into 96-well microtiter plates at the density 5000 cells/0.1 ml/well to ensure their exponential growth throughout the experimental period. After 24h, cells were exposed in triplicates to serial of extracts’ dilutions (50-1.56 µg/ml) dissolved in dimethyl sulfoxide (DMSO, Sigma) for 72h. The final concentration of DMSO did not exceed 0.5%, and did not cause any background response in the bioassay. Control and cell-free blank wells were included in each plate. Following incubation, cytotoxicity assays were conducted.

MMT test: The principle of MTT test is based on cellular reduction of the soluble yellow MTT tetrazolium salt (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) to a blue formazan product by mitochondrial dehydrogenases in viable cells. The intensity of the blue color formed by this reaction is a criterion for cell viability. Following incubation with plant extracts, the medium was removed and cells were incubated for 3h with 0.05mg/0.1ml/well of MTT (Sigma) dissolved in serum-free DMEM. After that, the medium was removed, formazan salts were dissolved in 0.1 ml/well of 0.04 M HCl in isopropanol, and light absorption was measured using a plate reader (Thermo-Labsystems) on 540 nm, with reference wavelength 690 nm.

SRB test: SRB test is a colorimetric assay, based on the ability of the protein dye sulforhodamine B (SRB) to bind to protein basic amino acid residues of trichloroacetic acid (TCA)-fixed cells. The incorporated dye can be solubilized for measurement, and the results are linear with cell number (Voigt, 2005). Following incubation with plant extracts, the medium was removed and the cells were fixed in TCA (0.025 ml of 50% w/v TCA per well) for 1 h at 4°C, washed five times with distilled water, air-dried, and stained with 0.05 ml of 0.4% SRB in 1% acetic acid for 30 min. Then, the cells were washed five times with 1% acetic acid to remove the unbound dye and air-dried. The incorporated dye was solubilized in 10 mM TRIS (pH 10.5) for 5 min, and light absorption was measured using a plate reader (Thermo-Labsystems) on 492 nm, with reference wavelength 690 nm.

Calculation of cytotoxicity and IC50: In both tests, cell cytotoxicity was calculated as a percentage of corresponding control value (non-treated cells) obtained in a minimum of three independent experiments. The half-maximal inhibitory concentration values (IC50), defined as the concentration that inhibits 50% of cell growth, were calculated from concentration-response curves. IC50 values were expressed as the mean of a minimum of three repeated experiments performed for each plant extract.

RESULTS AND DISCUSSION

It has been previously reported that compounds exhibiting cytotoxic effects in cell lines can demonstrate distinct kinetic profiles that fit into three
categories: acute (< 1h to full toxicity), subacute (1–40h), and long term (>40h) (Xia et al., 2008). Guided by these findings, exposure time of 72h in our study has been selected to allow the expression of full cytotoxic potential of investigated plant extracts.

All *M. communis* and *E. camaldulensis* extracts exhibited cytotoxic effects on MCF 7 and MDA-MB-231 cell lines, and the results were confirmed both by MTT and SRB assay. At the highest tested concentration (50 µg/ml), cytotoxicity of organic extracts/fractions was in the range from 40% to as high as 98%, while for water fraction it was in the range of 30-70%. The effects were dose dependent and based on dose-response curves IC50 values were determined (Table 1). In the case of *M. communis*, ethyl acetate and *n*-butanol fractions exhibited the highest antiproliferative effect on both cell lines with IC50 values ranging from 7 to 25 µg/ml. Total methanol extract and water fraction induced less pronounced cytotoxicity, with IC50 values ranging from 14 to 138 µg/ml. Overall pattern of the results obtained for *E. camaldulensis* extracts also indicate to ethyl acetate and *n*-butanol fractions as the most cytotoxic (IC50 5-41 µg/ml). It can also be noticed that general level and pattern of cytotoxicity of all investigated extracts is rather similar for both tested plants.

Further commenting on obtained IC50 results and antiproliferative potency of tested plant extracts requires a precaution due to a noticeable difference between the IC50 values obtained by the two applied cytotoxicity assays. Namely, IC50 values determined by SRB assay are in all cases lower than ones calculated from MTT assay. This dissimilarity is especially pronounced in the case of treatment of MDA-MB-231 cells by *E. camaldulensis* extracts, with the range of difference from 7 to 78 times. MTT and SRB assays are basically used for the assessment of cellular chemosensitivity and are related to the total cell number, therefore giving a relative measure of survival (Ristić-Fira et al., 2008). The reason for a discrepancy in our results probably lies in a difference in the sensitivity of applied cytotoxicity assays and targets which they reflect, since they measure distinct biological parameters in living cells. The same cell line could have poor capacity to reduce MTT, and at the same time could show high values of absorbance in the SRB assay, all because SRB assay does not depend on enzymatic activity but on protein content of the cells. In contrast to MTT testing, SRB staining is less sensitive to environmental fluctuation such as variations in pH or depletion of glucose, and is independent of intermediary metabolism, which are all the factors that may be influenced by the test substances (Lin et al., 1999). In addition, for the study of growth kinetics, the SRB assay is more suitable because of the higher sensitivity and better linearity with cell number (Keepers et al., 1991)

In any case, when comparing our results with the findings from the similar studies, antiproliferative potency of *M. communis* and *E. camaldulensis* on the two human breast cancer cell lines is evident. Aqueous acetone extract of *E. camaldulensis* exhibited a dose-dependent growth inhibitory effect on MCF 7 cell line, with recorded IC50 value of 36.5 µg/ml (Singab et al., 2011). Comparable effect on A2780 human ovarian cancer cell line was reported for methylene, hexane, and dichloromethane fruit extracts of *E. camaldulensis*, with
IC50 values of 17.2-17.5 µg/ml, while leaf extract had IC50 value of 19.3 µg/ml (Töpçü et al., 2011). Ethanolic extract of plants used in Thai traditional medicine showed high cytotoxic activity against MCF 7 cells (IC50 = 31-35 µg/ml), but water extract showed no cytotoxic effect (Sakpakdeejaroen and Itharat, 2009). Methanolic extract of *E. camaldulensis* also revealed marked toxicity (IC50 = 20.7 µg/ml) on human bladder carcinoma cell line as determined by MTT test (Al-Fatihi et al., 2005). On the other hand, leaves extract of another plant from *Myrtaceae* family expressed very low cytotoxic potency on MCF 7 cells (IC50 = 820±190 µg/ml), and were no cytotoxic to MDA-MB-231 cells as determined by MTT test (Kailehr et al., 2007).

Chemical constituents responsible for the cytotoxic activities detected in our study might be speculated. Among the investigated plant extracts, total methanol extract of both *M. communis* and *E. camaldulensis* was chemically analyzed. The results revealed high levels of plant phenols, especially flavonoids, flavonol-3-O-glycosides, flavonol-7-O-dyglicosides, phenol carboxic acids and their derivatives, rutin, elagic acid and their derivatives, etc. (Bugariin, 2010; Grbović, 2010). It is shown that some flavonoids exert cytotoxic effects towards human lung embryonic fibroblasts and human umbilical vein endothelial cells by increasing level of intracellular reactive oxygen species (Maťusovič et al., 2005). In addition, structure-cytostatic activity relationship was shown after treatment of Rhesus monkey kidney and rat glial tumor cells by various flavonoids (Sánchez et al., 2001). All these results indicate that the compounds identified in methanol extract from our study might be responsible for its cytotoxicity. Other plant extracts were not chemically analyzed, but certain conclusions about type of compounds responsible for their effect might be presumed according to the results of comparable studies. In one of them, the cytotoxic activity of leaf organic extracts of *E. camaldulensis* was attributed to

<table>
<thead>
<tr>
<th>Extract/fraction</th>
<th>MCF 7 cell line</th>
<th>MDA-MB-231 cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTT test</td>
<td>SRB test</td>
</tr>
<tr>
<td>Myrtus communis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>40.1</td>
<td>16.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>21.8</td>
<td>12.6</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>22.4</td>
<td>15.5</td>
</tr>
<tr>
<td>Water</td>
<td>50.5</td>
<td>28.6</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>67.2</td>
<td>12.5</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>26.7</td>
<td>7.9</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>40.3</td>
<td>11.0</td>
</tr>
<tr>
<td>Water</td>
<td>86.5</td>
<td>21.6</td>
</tr>
</tbody>
</table>

The results are presented as the mean of three independent experiments performed in triplicate for each cytotoxicity assay.

Tab. 1 – IC50 values (µg/ml) of different extracts of *Myrtus communis* and *Eucalyptus camaldulensis*, obtained by MTT test and SRB test on MCF 7 and MDA-MB-231 human breast cancer cell lines.
triterpenoids, mostly urosolic and oleanolic acids (Topçu et al., 2011). Globulocin A and eucaglobin isolated from leaves of *E. globules* had antioxidant, anti-inflammatory, and anti-melanogenesis activity (Hasegawa et al., 2008). Moreover, it was shown that myrtucommulone, a unique nonprenylated acylphloroglucinol contained in the leaves of *M. communis*, acts as a strong inducer of apoptosis selectively for cancer cells with lower cytotoxicity for normal non-transformed cells (Tretyakov et al., 2008). In addition, all these, or structurally similar substances, could also present active compounds in extracts from our study.

It is known that *in vitro* cytotoxicity can be cell-type specific (Xia et al., 2008; Sánchez et al., 2001). Regarding sensibility of the two cell lines (MCF 7 and MDA-MB-231) towards investigated plant extracts, our results did not reveal significant difference in a cellular response. Only in the case of *E. camaldulensis* extracts, results of SRB test could indicate a greater sensitivity of MDA-MB-231 cell line. However, since this finding is not confirmed by MTT test, no conclusions on difference in sensitivity could be drawn. The same cell lines were used in testing of medicinal plant extracts in other study, and they exhibited different sensitivity towards the plant extracts (Steenkamp and Gouws, 2006). There is also an example where MCF 7 and MDA-MB-231 cell lines, depending on a tested plant extracts, had either very similar or a different sensitivity as determined by MTT test (Kaih et al., 2007).

CONCLUSION

In conclusion, examined extracts of *M. communis* and *E. camaldulensis* exhibit considerable cytotoxic potential for MCF 7 and MDA-MB-231 human breast cancer cell lines. The two plants can be recommended for thorough chemical analyses for identification of active compounds and eventually for attention in the process of discovery of new natural products in the control of cancer.

ACKNOWLEDGMENTS

This study was supported by Serbian Ministry of Education and Science Grants No. 173037 and 172058. Dr. Gordana Bogdanović from the Oncology Institute of Vojvodina, Sremska Kamenica, Serbia, is acknowledged for her valuable advices concerning cell culture experiments.

REFERENCES

ЦИТОТОКСИЧНОСТ МYRTUS COMMUNIS И ЕUCALYPTUS CAMALDULENSIS НА ЋЕЛИЈАМА КАНЦЕРА ДОЈКЕ

Јелена Д. Хрубик1, Соња Н. Канишаревић1, Бранка Д. Глишић1, Емилија Ђ. Јовин2, Неда М. Мимица-Дукић2 и Радмила З. Ковачевић1

1 Универзитет у Новом Саду, Природно-математички факултет – Департман за биологију и екологију, Трг Доситеја Обрадовића 2, 21000 Нови Сад, Србија
2 Универзитет у Новом Саду, Природно-математички факултет – Департман за хемију, биохемију и заштиту животне средине, Трг Доситеја Обрадовића 3, 21000 Нови Сад, Србија

Резиме

Испитивана је in vitro цитотоксичност метанолског, етил-ацетатног, n-бутанолског и воденог екстракта Myrtus communis и Eucalyptus camaldulensis на две хумане ћелијске линије канцера дојке (MCF 7 и MDA-MB-231) помоћу два теста цитотоксичности (МТТ и SRB). Резултати су показали значајан цитотоксичан потенцијал испитиваних екстраката, са IC50 вредношћу у опсегу од 7 до 138 µg/ml за екстракте M. communis и 3-250 µg/ml за екстракт E. camaldulensis. Обе биљке су показале сличну активност, а није показана ни значајна разлика у сензитивности две ћелијске линије на испитане биљне екстракте. На основу добијених резултата, M. communis и E. camaldulensis се могу препоручити за темељну хемијску анализу у циљу идентификације активних једињења, а такође и као биљке које би могле имати значај у изучавању нових природних продуката у контроли канцера.

КЉУЧНЕ РЕЧИ: Eucalyptus camaldulensis Dehnh., MCF 7, MDA-MB-231, Myrtus communis L., цитотоксичност
EFFECT OF LEAD CONTAMINATION OF MAIZE SEED ON ITS BIOLOGICAL PROPERTIES

ABSTRACT: Effect of treatment of seed with various lead concentrations (0, 10^{-5}, 10^{-4}, 10^{-3}, and 10^{-2} mol/dm^3) on accumulation and distribution of lead (Pb) in seedling, seed germination, seedling growth, and mobilization of mineral matter during seed germination was investigated.

Content of Pb in the root and the shoot indicates that seeds imbibed in solutions of various Pb concentrations took up Pb intensively. Content of Pb in the root and the shoot increased with increase of Pb concentration and it was much larger in the root than in the shoot. Contrary to this, the accumulation coefficient was greater in the shoot than in the root.

Treatment of seed with Pb did not significantly affect its biological properties. Increase of Pb concentration decreased germination ability, germination energy, and percentage of typical seedlings, while increasing the number of atypical seedlings and non-germinated seeds.

Contamination of seed by Pb did not affect the dry matter mass and the growth of young plants shoots, while the length of the primary root, the mesocotyl root as well as the root mass at the highest Pb concentration, significantly decreased.

Translocation of mobilized mineral matter from the seed during germination and growth of young plants into the root and shoot was specific, depending on elements. Only the implementation of the highest implemented Pb concentration affected mobilization and translocation of some elements.

Based on the obtained results, it can be concluded that maize is characterized by significant tolerance to Pb contamination during seed germination and growth of seedlings.

KEY WORDS: germination, growth, lead imbibition of grain, maize, translocation of mineral elements

INTRODUCTION

Lead (Pb), unlike some other heavy metals, is not essential for higher plants and other organisms. At higher concentrations, Pb is highly toxic to man, animals and plants, which is why it is considered a dangerous pollutant. Pb pollution sources are in the first place transportation means, industry and its products, which use Pb in production technology. This heavy metal enters the
food chain mainly through plants, which is why it is very important to understand its accumulation and distribution in plants and its effect on physiological and biochemical processes in plants (Kabata-Pendias and Pendias, 2000). Even more so, since Pb remains in biological systems for a long period, which significantly increases its toxicity and probability of entering the food chain.

Number of experiments established unfavorable effects of high Pb concentrations on life processes in plants. It was determined that Pb inhibits seedling growth (Lane and Martin, 1977), cell elongation (Lane et al., 1978) and photosynthesis (Kastori et al., 1998), causes interruption of mitosis (Wiernicka, 1988), affects the water regime (Kastori et al., 1996) and mineral nutrition of plants (Cséh et al., 2000). Toxicity of heavy metals arises, among other things, from their ability to bond with enzymes, which alters their activity (VasnAsshe and Clijstres, 1990). During germination enzyme activity is very intensive, complex organic compounds are being degraded and at the same time new compounds are being synthesized and mineral matter mobilized. Having all this in mind, we saw the need to examine effect of contamination of seed by Pb on its biological properties, seed germination, growth of young plants and mineral matter mobilization during germination.

MATERIAL AND METHODS

The experiment was carried out using the seed of NS 7016 maize hybrid. Enrichment of seeds with Pb was completed by their imbibition in solutions with various concentrations of PbCl₂ (0, 10⁻⁵, 10⁻⁴, 10⁻³, and 10⁻² mol Pb/dm³) at 22°C during 24 hours. Following of the water uptake dynamics showed that at 22°C during 24 hours the water content in the seed reaches 37%, which is sufficient for germination and enables maximal introduction of Pb into the seed tissues. After imbibition, seeds were rinsed with distilled water. Seeds were kept in thermostat for germination for 4 days at 25°C. Afterwards, biological value of seed was examined, according to the standard procedure published in Official Gazette of SFRY (Službeni list SFRJ 47/87). Investigated properties were germination ability, germination energy, representation of typical and atypical seedlings and share of non-germinated seeds. After seven days, we measured length of the shoot, primary root and the mesocotyl root. The shown values represent the average of 20 measurements.

Plant material was rinsed with deionized water before drying. Drying was performed to constant mass, after which it was determined the dry matter mass of the shoot and the root. Afterwards, the plant material was homogenized and ground to powder, prepared for the analysis. Plant material was digested using cc HNO₃ + cc H₂O₂. The content of mineral matter was determined by ICP. The nitrogen content was determined by Kjeldahl method.

Distribution of Pb represents the ratio of Pb in the shoot and the root and its total content in the young plant. The accumulation coefficient was determined according to Duvigneaud (Larcher, 1995).

Test results were statistically processed by calculating the smallest difference between arithmetic means.
RESULTS AND DISCUSSION

The maize seed took up Pb very intensively, which is verified by its high content in the root and the shoot of young plants (Tab. 1). The obtained results show that Pb ions go more or less undisturbed through the seed coat and the semi-permeable membranes of the seed cells. The Pb content in dry matter in unpolluted conditions span from 0.1 to 10 μg/g of dry matter, with an average of 2 μg/g (Cannon, 1976). Sillanpaa and Jansson (1992) investigated the Pb content in different edaphic conditions in 30 countries in young wheat and maize plants, and they determined that its content spans from 0.2 to <1 μg/g of dry matter, while in some countries it was >1 μg/g. According to Kabata-Pendias and Kabata (2000), the Pb content in cereal grain in different countries spanned from 0.01 to 2.28 μg/g of dry matter. The Pb content in the root and the shoot of untreated seed determined by these investigations confirm findings of the mentioned authors, while the Pb content in the root was much higher than in the shoot. In the root, Pb mostly accumulates in the apoplast. The xylem sap is characterized by high Pb content, where it is bonded to organic acids, in the first place citric acid. In the root, Pb is also intensively bonded to functional groups of xylem elements. There is a high positive correlation between Pb content in the nutrient medium and plants (Kabata-Pendias and Wlacak, 1985), which is also confirmed by these results. With increase of Pb concentration, its content in the root and the shoot also increased significantly, especially at the highest Pb concentration seed treatment.

Tab. 1 – Content, distribution, and accumulation coefficient of lead in young maize plants at various treatments of seed with lead

<table>
<thead>
<tr>
<th>Organ</th>
<th>Treatment (mol Pb/dm³)</th>
<th>0</th>
<th>10⁻⁵</th>
<th>10⁻⁴</th>
<th>10⁻³</th>
<th>10⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content (μg Pb/g DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot</td>
<td></td>
<td>0.29</td>
<td>2.07</td>
<td>2.00</td>
<td>9.31**</td>
<td>33.59**</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td>3.76</td>
<td>4.54</td>
<td>5.40**</td>
<td>19.34**</td>
<td>182.67**</td>
</tr>
<tr>
<td></td>
<td>Distribution (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot</td>
<td></td>
<td>9.15</td>
<td>35.10</td>
<td>34.21</td>
<td>38.40</td>
<td>18.80</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td>90.85</td>
<td>64.90</td>
<td>66.79</td>
<td>61.60</td>
<td>81.20</td>
</tr>
<tr>
<td></td>
<td>Coefficient of accumulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot</td>
<td></td>
<td>0.00</td>
<td>7.13</td>
<td>6.89</td>
<td>32.10</td>
<td>115.82</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td>0.00</td>
<td>1.21</td>
<td>1.44</td>
<td>5.14</td>
<td>48.58</td>
</tr>
</tbody>
</table>

With mobilization of nutrient compounds of the seed during germination, there was also intensive translocation of Pb into formed organs. Taking up and translocation of Pb also depends on its form. Taking up Pb is more intensive from nitrate than from sulphate or carbonate form. At implementation of an organic compound (Pb-tetraalkyl), translocation in the spring wheat grain was very intensive. The Pb content was 20 μg/g of dry matter (Diel et al., 1983). In this paper Pb was implemented in inorganic form, as a highly solu-
ble salt PbCl₂ that enabled intensive taking up of Pb by the treated seed and its translocation during germination into newly formed organs. It was observed that when Pb was uptaken through the root from the nutrient medium, its accumulation in the root was much higher than in the above-ground part (Lane and Martin, 1977, Janjatović et al., 1991, Kastori et al., 1998). Zimdahl (1975) states that only 3% of Pb is translocated from the root to the above-ground parts. Reasons for limited translocation of Pb from the root to the above-ground parts were investigated by several authors in the past. Malone et al. (1974) state that in maize plants Pb is primarily accumulated in dictyosome vesicles, which merge and close the Pb deposition. Afterwards, the vesicles move from the cytoplasm to the outer side of the plasmalemma, bond to the cell wall, where Pb is than being accumulated. The Pb accumulation in the root is explained, among other, by its anatomic built. It was noticed that Pb is accumulated around endodermis, which is why it is considered a barrier to apoplastic Pb transport. This barrier is not, however, total but partial, to which points the fact that closer to the root top in the protophloem there is more Pb than in the same tissue at a larger distance from the root top (Lane and Martin, 1977). Due to the specific built of the endodermis, according to some authors, there is a noticeable difference in Pb accumulation between monocotyledonous and dicotyledonous plants (Miller, 1977).

Significantly higher accumulation of Pb in the root, established in this test, cannot be explained only by its built or accumulation in the cell wall, since Pb arrived to the root and the shoot of young plants by its mobilization from the seed. During germination, products of decomposition of organic and mineral matter from the seed partially go to the environment, which creates possibility for the root of the young plant to uptake Pb from the environment, which could partially explain a higher accumulation of Pb in the root. Plants are characterized by various mechanisms of protection from the unfavorable effects of high concentrations of heavy metals (Arsenijević-Maksimović et al., 2001). It is possible that accumulation of Pb in the root is a form of protection mechanism from accumulation in the above-ground parts of the plant.

Treatment of seed by Pb did not significantly affect its biological value (Tab. 2). With the increase of Pb concentration, a tendency of decrease of germination ability, germination energy and typical seedlings is observed, as well as and increase of share of atypical seedlings and non-germinated seeds. However, the obtained differences in the mentioned parameters were not statistically significant. It could be because Pb mostly remained in the peripheral parts of the seed and did not reach the germ, causing its effect to be expressed later, to which point the results given in the Tab. 3.

With the increase of Pb concentration, the length of the primary root, mesocotyl root and the root dry mass decreased, while it did not significantly affect the seedling (Tab. 3). This difference in effect on certain organs can be explained by the difference in Pb accumulation, which was higher in the root than in the shoot. Generally, it can be said that toxic concentrations of heavy metals decrease the growth of the root to a greater extent than the growth of the aboveground parts. The decrease of the root length can be explained by the
effect of this element on cell elongation and cell division (Lane and Martin, 1977, Lane et al., 1978). Sensitivity of certain plant species to presence of higher Pb concentrations varies. According to tests performed by Diehl et al. (1983), in wheat the grain yield is significantly decreased when Pb concentration in straw reaches 45 mg/kg of dry matter, while in spinach which is considered a species very sensitive to Pb, already at concentration of 10-15 mg/kg of dry matter the yield of leaves decreases (Jude and Steite, 1977). Reaction of certain plant species to higher concentrations of Pb depends on the Pb/Ca concentration ratio in the environment. Having our results in mind, it may be concluded that maize in early phases of growth is characterized by high tolerance to toxic concentrations of Pb. Higher concentrations of heavy metals, among which Pb, can induce protein synthesis, phytochelatin, which was found in maize seedlings as well (Szigiti, 1998). In the tissue culture there was detected forming of peptides with the sequence (γ-Glu-Cys)_{24}-Gly. It is assumed that peptides containing SH-groups bond Pb in the cell and therefore protect the enzymes containing similar functional groups. Lead is not essential for higher plants. There is, however, data that indicates that lower concentrations of Pb can show stimulating effect on plant growth (Langerwerff et al., 1973). Broyer et al. (1972) state that if plants need Pb, its sufficient concentration is 2 to 6 ppb. It has been established that treating seed with high Ni concentration reduces biological value of the seed, as well as the growth of the primary root (Doroghazi et al., 2010).

Lower applied concentrations of Pb have not significantly affected mobilization of mineral matter during seed germination, which is why only the values obtained using higher concentrations will be shown (Tab. 4). Content of all investigated elements except P and S in the root, and N, P, K and Mo in

Tab. 2 – Biological properties of the seed treated with various concentrations of lead

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical seedling (%)</td>
<td>96.75</td>
<td>95.50</td>
<td>95.00</td>
<td>94.75</td>
<td>93.75</td>
</tr>
<tr>
<td>Atypical seedling (%)</td>
<td>2.25</td>
<td>2.75</td>
<td>4.50</td>
<td>4.00</td>
<td>4.75</td>
</tr>
<tr>
<td>Non-germinated seed (%)</td>
<td>1.00</td>
<td>1.75</td>
<td>0.50</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Germination energy (%)</td>
<td>97.00</td>
<td>95.00</td>
<td>95.00</td>
<td>95.00</td>
<td>94.00</td>
</tr>
<tr>
<td>Germination ability (%)</td>
<td>97.00</td>
<td>95.00</td>
<td>95.00</td>
<td>95.00</td>
<td>94.00</td>
</tr>
</tbody>
</table>

Tab. 3 – Effects of seed treatment with various lead concentrations on growth and mass of young maize plants

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>10^{-5}</th>
<th>10^{-4}</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot length (cm)</td>
<td>10.13</td>
<td>10.26</td>
<td>9.90</td>
<td>10.49*</td>
<td>9.85</td>
</tr>
<tr>
<td>Primary root length (cm)</td>
<td>12.11</td>
<td>11.80</td>
<td>11.70</td>
<td>11.91</td>
<td>11.20*</td>
</tr>
<tr>
<td>Mesocotyl root length (cm)</td>
<td>9.20</td>
<td>9.03</td>
<td>8.89</td>
<td>9.37</td>
<td>8.61**</td>
</tr>
<tr>
<td>Shoot dry mass (mg)</td>
<td>28.30</td>
<td>27.00</td>
<td>28.10</td>
<td>27.80</td>
<td>28.70</td>
</tr>
<tr>
<td>Root dry mass (mg)</td>
<td>36.50</td>
<td>33.10</td>
<td>39.50</td>
<td>36.50</td>
<td>29.90**</td>
</tr>
</tbody>
</table>
the shoot, in Pb treated seeds was lower than in the control. Presence of higher concentration of Pb in the seed reduced to a greater extent only mobilization of Ca, Na, and Cu. Lead can decrease and in some cases also increase uptake and accumulation of certain elements. In young cucumber plants, uptake of K, Ca and Fe significantly decreased in presence of PbCl₂ (Ziatti, 1998).

Tab. 4 – Effects of seed treatment with lead on concentration and distribution of macro- and microelements in shoots and roots of maize

<table>
<thead>
<tr>
<th>Macro-nutrients (mg/kg DM)</th>
<th>Plant part</th>
<th>Treatment Pb (mol/dm³)</th>
<th>Micro-nutrients (µg/g DM)</th>
<th>Plant part</th>
<th>Treatment Pb (mol/dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant part</td>
<td>0</td>
<td>10⁻²</td>
<td>Plant part</td>
<td>0</td>
<td>10⁻²</td>
</tr>
<tr>
<td>N</td>
<td>Sh</td>
<td>3610.1</td>
<td>3880.0</td>
<td>Fe</td>
<td>Sh</td>
</tr>
<tr>
<td>R</td>
<td>1940.0</td>
<td>1930.0</td>
<td>R</td>
<td>240.30</td>
<td>226.25</td>
</tr>
<tr>
<td>P</td>
<td>Sh</td>
<td>617.0</td>
<td>634.2</td>
<td>Zn</td>
<td>Sh</td>
</tr>
<tr>
<td>R</td>
<td>314.9</td>
<td>328.4</td>
<td>R</td>
<td>52.72</td>
<td>50.82</td>
</tr>
<tr>
<td>K</td>
<td>Sh</td>
<td>1323.8</td>
<td>1419.8</td>
<td>Cu</td>
<td>Sh</td>
</tr>
<tr>
<td>R</td>
<td>825.5</td>
<td>823.8</td>
<td>R</td>
<td>7.52</td>
<td>5.70</td>
</tr>
<tr>
<td>S</td>
<td>Sh</td>
<td>263.4</td>
<td>235.8</td>
<td>Mn</td>
<td>Sh</td>
</tr>
<tr>
<td>R</td>
<td>216.0</td>
<td>220.6</td>
<td>R</td>
<td>57.92</td>
<td>53.33</td>
</tr>
<tr>
<td>Mg</td>
<td>Sh</td>
<td>114.6</td>
<td>119.0</td>
<td>Mo</td>
<td>Sh</td>
</tr>
<tr>
<td>R</td>
<td>277.8</td>
<td>266.4</td>
<td>R</td>
<td>1.26</td>
<td>1.20</td>
</tr>
<tr>
<td>Ca</td>
<td>Sh</td>
<td>141.8</td>
<td>132.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>1042.0</td>
<td>955.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Sh</td>
<td>63.4</td>
<td>53.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>504.7</td>
<td>479.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sh-Shoot; R-Roots

Remobilization of elements from certain parts of the seed during germination varies. Out of the total content of mineral matter in the seed, the seed coat contains 55-57%, except for S, which is around 40% (Mousavi-Nik et al., 1997).

Distribution of certain elements during seed germination was specific. Elements that constitute organic matter, N, P, S, and K that does not yield organic compounds, accumulated more significantly in the shoot than in the root. Other investigated elements, Cu, Zn and especially Ca, Mg, Fe, Na, Man and Mo were present in the root at a much greater extent than in the shoot. Intensive remobilization of K to the shoot during germination was also established by Mousavi-Nik et al. (1997).

REFERENCES

УТИЦАЈ КОНТАМИНАЦИЈЕ СЕМЕНА КУКУРУЗА ОЛОВОМ НА ЊЕГОВА БИОЛОШКА СВОЈСТВА
Рудолф Р. Кастори, Ивана В. Максимовић, Ottó T. Dorogházi, Марина И. Путник-Делић
Пољопривредни факултет Нови Сад, Трг Доситеја Обрадовића 8, 21000 Нови Сад

Резиме
Испитано је дејство третирања семена кукуруза различитим концентрацијама олова (10⁻⁵, 10⁻⁴, 10⁻³, 10⁻² mol/dm³) на накупљање и дистрибуцију олова (Pb) у кlijанцу, клијање семена, пораст поника и мобилизацију минералних материја у току клијања.

Садржај Pb у корену и изданку поника указује да семе потопљено у растољубности различитим концентрацијама Pb интензивно усваја Pb. Садржај Pb у корену и изданку повећао се са повећањем примењених концентрација Pb и био је значајно већи у корену него у изданку. Насупрот томе, коефицијент акумулације био је већи у изданку него у корену.

Третирање семена Pb није у већој мери утицало на његова биолошка својства. Са повећањем концентрације Pb смањили су се клијавост семена и удео тиличних поника, а повећао се број атипичних поника и непроклијалих семена.

На масу суве материје и раст изданка младих биљака контаминација семена Pb није испољила дејство, док су се дужина примарног корена, корена мезокотила као и маса корена значајно смањили при третирању семена највећом концентрацијом Pb.

Транслокација мобилизираних минералних материја из семена у корен и раст младих биљака у корен и изданак била је специфична, зависна од елемената. Само је примена највеће испитиване концентрације Pb испољила утицај на мобилизацију и транслокацију неких елемената.

На основу добијених резултата може се закључити да се кукуруз у фази клијања семена и пораста поника одликује још и толерантност према контаминацији Pb.

КЉУЧНЕ РЕЧИ: клијавост, кукуруз, мобилизација минералних елемената, раст, третирање оловом
GENETIC, CHEMICAL, AND PHYSICAL PREDISPOSITIONS OF NEW MAIZE INBRED LINES AND HYBRIDS WITH EFFICIENT PHOTOSYNTHESIS**

Abstract: This study confirmed our hypothesis that new maize inbred lines and hybrids derived from them had a dominant property of an efficient photosynthetic model. This property is successfully used in breeding programmes, modern technologies of the seed, and commercial maize production. This statement is supported by the results displayed on the erect position of the top leaves of new maize inbred lines and photosynthetic and fluorescence parameters: the change of the delayed chlorophyll fluorescence intensity during its course and dynamics, the Arrhenius criterion for the determination of critical temperatures (phase transition temperatures) and the activation energies, as a measure of conformational changes in chloroplasts and the thylakoid membrane. Furthermore, a grain structure including its physical and chemical parameters of new maize inbred lines and hybrids was analysed in the present study. In addition, relevant breeding, seed production and technological traits, properties and parameters of new maize inbred lines and maize hybrids were observed in the present study. The overall presented results show that properties of new inbred lines and maize hybrids are based on the nature of conformational and functional changes that occur in their chloroplasts and thylakoid membranes, as well as, on progressive effects in modern breeding, contemporary hybrid seed production, and the commercial maize production.

KEY WORDS: delayed chlorophyll fluorescence, grain, hybrid, inbred, leaf, photosynthetic model, thylakoid membrane, Zea mays L.

INTRODUCTION

The complex and interdependent processes in fundamental, multidisciplinary, and applied sciences are frequently interrelated. This manuscript presents...
the bonds of interrelated studies carried out within breeding, photosynthesis, fluorescence, biophysical chemistry and seed production in new maize inbred lines and hybrids with efficient photosynthetic functions. Maize breeding and seed production have been intensively developing for the last 65 years. As a result of such activity, over 1400 grain and silage hybrids have been derived. Modern equipment and technical and technological prerequisites were provided for carrying out the process of breeding and hybrid and commercial maize seed production (Duvick, 1977, 1984; Sprague, 1984; Trifunović, 1986; Dumanović, 1986; Hallauer, 1988; Ivanović et al., 1995; Radenović et al., 2000).

Since 1978, the number of plants per area unit (plant density) has been significantly increasing, which resulted in the significant increase in grain yields of both, maize hybrids and commercial maize (Radenović et al., 1978, 2001a, b; Kojić and Ivanović, 1986). At the same time, a programme on breeding and the seed production of maize hybrids that included inbreds with erect top leaves has been developed (Radenović et al., 1978, 2003, b, 2004a, b, 2007, 2008; Fèlner et al., 2006). According to our hypothesis, new maize inbred lines with erect leaves are the closest to the assumptive maize photosynthetic model (Radenović and Grodzinski, 1998).

The studies on maize photosynthesis carried out in the previous period did not have a more important application in breeding and the production of maize hybrid seed. It was almost impossible to present practical results and a clear and direct interrelationship among photosynthesis, breeding and the production of maize hybrid seed by an old and traditional approach. The way out was found in the functional connection of interdependence of photosynthetic functions and fluorescence (Radenović et al., 2000, 2001a, b, 2004a, b, 2007, 2010).

During the last 40 years, new and significant studies within the field of bioluminescence and fluorescence phenomena and processes within the plant systems, including maize, have been carried out (Barber and Neumann, 1974; Bukhov et al., 1989; Dzhibladze et al., 1988; Govindjee and Papageorgiou, 1971; Govindjee et al., 1990; Haveman and Lavorel, 1975; Hipkins and Barber, 1974; Holzapfel and Haug, 1974; Jurisnic, 1986; Jurisnic and Govindjee, 1982; Krause and Weis, 1991; Lichtenthaler and Rinderle, 1988; McCauley and Rubby, 1981; Papageorgiou, 1975; Veselovski and Veselova, 1990; Marković et al., 1987, 1993, 1999; Radenović, 1994; Radenović et al., 1994a, b; Radenović and Jeremić, 1996). The direct dependence of the delayed chlorophyll fluorescence (DF) intensity on changes of photosynthetic processes in chloroplasts and thylakoid membranes of maize intact leaves was determined (Radenović, 1994a, b; Radenović and Jeremić, 1996). S Conditions that provided monitoring of complex photosynthetic processes in the intact leaf of maize inbreds by parameters of a photosynthetic and fluorescence model in the form of chlorophyll DF were developed (Radenović et al., 2000, 2001a, b, 2010).

Research methods within the field of biophysical chemistry contributed to diversified binding of studies on photosynthetic and transport processes in
chloroplasts and the thylakoid membrane and different chemical structures of grain with processes of fluorescence spectroscopy and chemical kinetics (Radonjić, 1994; Radonjić et al., 2007, 2008, 2010; Rubin et al., 1988).

The objective of the present study was to show that new inbred lines that are included into new high yielding maize hybrids could be an efficient photosynthetic model and could contribute to the functional connection of breeding, photosynthesis and fluorescence, and thereby to a greater extent to progress of maize breeding and the modern production of hybrid seed and commercial maize.

MATERIAL AND METHODS

Plant material – The studies were performed with the following two new maize inbred lines: ZPPL 218 and ZPPL 318 and the hybrids developed from them: ZP 600, ZP 606, and ZP 666. The observed inbreds and maize hybrids belong to the collection of the Maize Research Institute, Zemun Polje, Belgrade, Serbia.

As these are new inbred lines and maize hybrids, their traits will be presented in this manuscript. Figure 1 shows the actual appearance of new maize inbred lines with erect top leaves: ZPPL 218 and ZPPL 318 and prospective maize hybrids: ZP 600, ZP 606, and ZP 666 with their ears.

Fig. 1. – Actual appearance of new inbred lines with erect top leaves: ZPPL 218 (A), ZPPL 318 (B), and of prospective hybrids with their ears: ZP 600 (C), ZP 606 (D) and ZP 666 (E)
Methods – Overall studies of the stated new inbred lines and prospective maize hybrids developed from them with erect top leaves encompassed several series of experiments in which new and conventional methodological procedures were applied.

1. The measure of an angle and leaf area – The first series of experiments was related to studying the erect position of top leaves. A specially designed protractor was used to measure the angle between lines of the position of the above-ear leaf and the position of the plant stalk of new maize inbred lines. The leaf area was measured by using the portable area meter (model LI-3000). Measures of the angle between the above-ear leaf and the stalk and the leaf areas were carried out on 218 plants for each inbred line during the three-year period. These methodical procedures were described in previously published papers (Radnović et al., 2003, 2004a, b, 2007).

2. Photosynthetic and fluorescence measurements – The second series of experiments was related to photosynthetic-fluorescence measurements, including thermal processes of DF, critical phase transition temperatures and activation energies. The test maize inbreds grown in the experimental field of the Maize Research Institute, Zemun Polje, were brought to the laboratory between 7 a.m. and 8 a.m. Plants sampled in the field were transversally cut in the ground internode. In the laboratory, plants were internode lengthwise placed in water. Prior to the fluorescence experiment, all plants were kept under the black ball glass for two hours. Segments of intact above ear leaves were taken from such plants and placed into a chamber of the phosphoroscope. The intact leaf segments were kept in the chamber (in the dark) for at least 15 minutes, and then thermal processes of delayed chlorophyll fluorescence were measured. These tests were performed on 168 plants of each maize inbred line.

![Fig. 2. – Experimental setup of the photosynthetic fluorescence method and the measuring equipment for delayed chlorophyll fluorescence: C – dark chamber with a sample stand; S – sample (intact leaf segment), ELS – excitation light source, PH – photo-multiplier; O – oscilloscope, R – printer, ELB – excitation light beam, DF – luminescent light (delayed fluorescence), IS – input dark chamber slot, OS – output dark chamber slot, F – filters](image-url)
The improved non-invasive photosynthetic-fluorescence method used to measure DF is schematically presented in Figure 2. This method, developed at the Maize Research Institute, Žemun Polje, has been improved several times. Photosynthetic-fluorescence measurements were performed after a method that had been described in previously published papers (Radenović, 1994; Marković et al., 1996; Radenović et al., 2001a, b, 2002, 2004a, b, 2007, 2008, 2010).

3. Functional dependence of the yield of prospective maize hybrids for various locations in Serbia – Functional dependence of the yield of new and prospective maize hybrids ZP 600, ZP 606 and ZP 666 was observed in eight different locations in Serbia with the application of standard methods for a contemporary maize production (Radenović et al., 2010).

4. Broader presentation of breeding and seed production properties of new inbred lines and maize hybrids with erect top leaves – As new maize inbred lines, with erect top leaves, and prospective hybrids were observed a broader presentation of relevant breeding, seed production and technological traits, properties and parameters gained by use of standard methods is given.

5. Chemical composition, physical properties and a structure of grain of prospective maize hybrids with efficient photosynthetic functions – Methods used for the determination of the chemical composition, physical properties and a structure of grain of prospective maize hybrids with erect top leaves were fully described in previously published papers (Radosavljević et al., 2000; Radenović et al., 2010).

RESULTS

1. The measure of the angle and the area of the above-ear leaf – Results on the measures of angles between the above-ear leaf and the stalk and the average leaf areas are presented in Table 1. Based on obtained results on the measures of angles it can be stated that the observed new maize inbred lines belong to the group of 10-15 recently developed inbred lines with erect top leaves.

Tab. 1. – The angle of the above-ear leaf and the leaf area of new maize inbred lines with efficient photosynthesis

<table>
<thead>
<tr>
<th>Inbred line</th>
<th>FAO maturity group</th>
<th>Heterotic origin of the inbred*</th>
<th>Angle of the above-ear leaf in degrees</th>
<th>Area of the above-ear leaf ((x 10^3 \text{ cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPPL 218</td>
<td>650</td>
<td>Zemun Polje – Lancaster</td>
<td>22.1º</td>
<td>3.91</td>
</tr>
<tr>
<td>ZPPL 318</td>
<td>600</td>
<td>Zemun Polje – BSSS</td>
<td>21.2º</td>
<td>3.58</td>
</tr>
</tbody>
</table>

*Studied new maize inbred lines represent good heterotic pairs, they are characterised as good general combiners for grain yield, they increase well and they are high yielding inbreds

87
2. Empirical procedure for photosynthetic fluorescence studies on the above-ear leaf – The detailed studies on thermal processes of DF of observed new maize inbred lines with erect top leaves were performed. The thermal curve is a curve that shows the dynamics of changes in the stationary DF level intensity in dependence on a temperature. The trend of its establishment is most often analogous to changes in the duration in seconds of segments marked with a, b, c, d, e, f, and g, Figure 3, which was determined by the empirical procedure (Radnović et al., 2008, 2009, 2010). Monitoring the course of the thermal curve and the analysis of the duration of certain segments provided data on the existence of a greater number of critical temperatures (phase transition temperatures) at which greater or smaller structural and functional changes occurred in chloroplasts and the thylakoid membrane of observed new maize inbred lines with erect top leaves.

Fig. 3. – Schematic presentation of the empirical procedure for typical changes in DF intensities (I_{df}) on the intact above-ear leaf of the observed new maize inbred lines (solid line) and changes in temperatures (dashed line): Curve A indicates induction processes of DF, while curve B encompasses photosynthetic fluorescence thermal processes of DF. Typical temporal segments (a, b, c, d, e, f and g) on the thermal curve B correspond to dynamics of I_{df} changes at the time of a DF formation. Conformational and functional changes in chloroplasts and the thylakoid membrane of observed new maize inbred lines with erect top leaves occur at the interception points of typical temporal segments

3. The exact temperature dependence of the delayed chlorophyll fluorescence intensity for the thylakoid membrane of new maize inbred lines with erect top leaves – The experimental measures of changes in the stationary DF level in dependence on the temperature, ranging from 25 to 60 ºC, were performed. The dynamics of temperature dependence for observed new maize inbred lines with erect top leaves is presented in Figure 4A and B.
4. The Arrhenius plot for the determination of critical temperatures and conformational changes in chloroplasts and the thylakoid membrane of the new maize inbred lines with erect top leaves – The Arrhenius plot is based on the linearization of the exact DF temperature dependence of observed new maize inbred lines. Critical temperatures (phase transition temperatures) at which conformational changes occur in chloroplasts and the thylakoid membrane are determined by the application of the Arrhenius plot. Results of the Arrhenius plot application to new maize inbred lines with erect top leaves are presented in Figure 5A, B.

5. Activation energy and critical temperatures in the thylakoid membrane of the observed new maize inbred lines with erect top leaves – Detailed studies on the thermal processes of DF, and especially on the analysis...
of experimental thermal curve, encompassed not only the temperature dependence and the Arrhenius plot, but also the estimation of values of activation energies (Ea) for critical temperatures (phase transition temperatures) in chloroplasts and the thylakoid membranes of the observed new maize inbreds with erect top leaves: ZPPL 218 and ZPPL 318. Obtained results are shown in Table 2.

Tab. 2. – Changes in activation energies (Ea) and critical temperatures (t ºC) in the course of thermal processes in the thylakoid membrane of the intact above-ear leaf of studied new maize inbred lines with erect top leaves

<table>
<thead>
<tr>
<th></th>
<th>ZPPL 218</th>
<th></th>
<th>ZPPL 318</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ea, kJ/mol</td>
<td>27.0</td>
<td>37.0</td>
<td>47.8</td>
<td>57.4</td>
</tr>
<tr>
<td>t, ºC</td>
<td>43.1</td>
<td>77.23</td>
<td>50.51</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>26.09</td>
<td>53.5</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td>27.3</td>
<td>77.23</td>
<td>53.5</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td>51.1</td>
<td>227.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Functional dependence of the yield of new maize hybrids for different locations in Serbia – New and prospective maize hybrids: ZP 600, ZP 606 and ZP 666, are mainly indented for the cultivation in Banat, Srem, Bačka, Mačva, and alongside riverbanks in Serbia. The preliminary results on yields of the stated maize hybrids are presented in Table 3.

Tab. 3. – Yields of new and prospective maize hybrids (t ha⁻¹) with efficient photosynthesis in eight locations of Serbia*

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Locations in Serbia**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZP 600</td>
<td>12.8</td>
</tr>
<tr>
<td>ZP 606</td>
<td>12.9</td>
</tr>
<tr>
<td>ZP 666</td>
<td>12.7</td>
</tr>
</tbody>
</table>

*Results were obtained during 2009, 2010 and 2011
**Locations in Serbia by the ordinal number: 1 – Loznica, western Serbia; 2 – Sakule, southern Banat; 3 – Smederevo, the Danube region; 4 – Zmajevo, southern Bačka; 5 – Žarkovac, eastern Srem; 6 – Batoš, mid Banat; 7 – Divoš, northern Srem; 8 – Bečej, eastern Bačka

7. Brief survey of breeding and seed production traits of new maize inbred lines and maize hybrids with efficient photosynthetic functions – Observed new maize inbred lines ZPPL 218 and ZPPL 318 have been included in breeding for the last 2-3 years. Due to it, relevant observations of their total traits, performances, and parameters are presented in Table 4.
Tab. 4. – Relevant breeding and seed production traits of new maize inbred lines with efficient photosynthesis

<table>
<thead>
<tr>
<th>Ord. no.</th>
<th>Name and defining of traits</th>
<th>Brief description of breeding, seed production and technological traits of new maize inbred lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heterotic origin</td>
<td>Zemun Polje – Lancaster</td>
</tr>
<tr>
<td>2</td>
<td>FAO maturity group</td>
<td>Zemun Polje – BSSS</td>
</tr>
<tr>
<td>3</td>
<td>Grain yield ha(^{-1}) in kg at 14% moisture</td>
<td>650 600 3220±204 4056±265 4186±255 6045±330</td>
</tr>
<tr>
<td>4</td>
<td>Number of plants ha(^{-1}) at harvest</td>
<td>65000 71500 65000 71500</td>
</tr>
<tr>
<td>5</td>
<td>Inbred tolerance to stress factors such as drought, high temperature and the like</td>
<td>Inbred has a good tolerance to drought and high temperatures</td>
</tr>
<tr>
<td>6</td>
<td>Grain properties</td>
<td>Kernel of this inbred belongs to dent type and has plenty of anthocyanins on its flanks</td>
</tr>
<tr>
<td>7</td>
<td>% moisture in grain at harvest</td>
<td>Inbred is harvested at 18.00% 22.00%</td>
</tr>
<tr>
<td>8</td>
<td>Is grain suitable for nutrition of ruminants and nonruminants</td>
<td>Inbred has high quality grain and hybrids developed from this inbred have also high quality grain suitable for nutrition of ruminants and nonruminants.</td>
</tr>
<tr>
<td>9</td>
<td>Is the inbred suitable for the development of silage hybrids?</td>
<td>Inbred is very suitable for the development of silage hybrids</td>
</tr>
<tr>
<td>10</td>
<td>Grain digestibility (%)</td>
<td>81.6 80.44</td>
</tr>
</tbody>
</table>

In the same way, new and prospective maize hybrids ZP 600, ZP 606, and ZP 666 have already caught attention of experts; hence, it is necessary to study their overall traits. Results on studied traits of observed new and prospective hybrids are presented in Table 5.

8. Chemical composition and physical properties of new inbred lines and prospective maize hybrids with efficient photosynthetic functions – Results on studies of chemical composition and physical properties of new inbred lines (ZPPL 218 and ZPPL 318) and prospective maize hybrids with erect top leaves (ZP 600, ZP 606 and ZP 666) are presented in Tables 6 and 7.
Tab. 5. – Relevant breeding and seed production traits of prospective maize hybrids with efficient photosynthesis

<table>
<thead>
<tr>
<th>Ord. no.</th>
<th>Name and defining of traits</th>
<th>Brief description of breeding, seed production and technological traits of prospective maize hybrids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ZP 600</td>
</tr>
<tr>
<td>1</td>
<td>Grain yield ha(^{-1}) in kg at 14% moisture</td>
<td>11930</td>
</tr>
<tr>
<td>2</td>
<td>Optimum sowing density and affinity of hybrids to densities (ha)</td>
<td>58-62000</td>
</tr>
<tr>
<td>3</td>
<td>Regional distribution of hybrids according to agroecological characteristics of the region</td>
<td>Very adaptable, tolerant to drought and various growing conditions of the region</td>
</tr>
<tr>
<td>4</td>
<td>FAO maturity group</td>
<td>FAO 580-600</td>
</tr>
<tr>
<td>5</td>
<td>Description of the essential hybrid stalk traits</td>
<td>Medium tall, slender, elastic and very firm</td>
</tr>
<tr>
<td>6</td>
<td>General data on the type and quality of grain</td>
<td>Yellow kernel belongs to a dent type, is of high quality. 1000-kernel mass is 488.7 g</td>
</tr>
<tr>
<td>7</td>
<td>Dates of sowing and data on emergence and early growth</td>
<td>Tolerates early sowing, has good emergence and early growth</td>
</tr>
<tr>
<td>8</td>
<td>Tolerance, resistance and adaptability</td>
<td>Very adaptable to soil and conditions of cropping practices. Tolerant to drought and high temperatures.</td>
</tr>
<tr>
<td>9</td>
<td>Stay green and suitability for silage</td>
<td>Grain filling period is long and dry down is good. Expresses stay green trait. It is excellent for silage production.</td>
</tr>
<tr>
<td>10</td>
<td>Grain suitability for the nutrition of domestic animals</td>
<td>It has grain of high quality with protein content up to 12%. It is suitable for ruminants and nonruminants.</td>
</tr>
<tr>
<td>11</td>
<td>Grain digestibility (%)</td>
<td>92.47</td>
</tr>
</tbody>
</table>
Tab. 6. – Chemical composition of new maize inbred lines and hybrids with efficient photosynthesis

<table>
<thead>
<tr>
<th>Inbred</th>
<th>Starch (%)</th>
<th>Proteins (%)</th>
<th>Oil (%)</th>
<th>Crude fibre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPPL 218</td>
<td>69.10</td>
<td>9.60</td>
<td>5.79</td>
<td>2.18</td>
</tr>
<tr>
<td>ZPPL 318</td>
<td>71.27</td>
<td>10.31</td>
<td>4.91</td>
<td>2.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Starch (%)</th>
<th>Proteins (%)</th>
<th>Oil (%)</th>
<th>Crude fibre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZP 600</td>
<td>73.01</td>
<td>7.76</td>
<td>5.76</td>
<td>1.91</td>
</tr>
<tr>
<td>ZP 606</td>
<td>73.48</td>
<td>9.84</td>
<td>5.06</td>
<td>2.23</td>
</tr>
<tr>
<td>ZP 666</td>
<td>74.32</td>
<td>9.61</td>
<td>6.10</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Tab. 7. – Physical properties of grain of new maize inbred lines and hybrids with efficient photosynthesis

<table>
<thead>
<tr>
<th>Inbreds</th>
<th>TKW*</th>
<th>TW</th>
<th>D</th>
<th>FI</th>
<th>MR</th>
<th>HEF</th>
<th>SEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPPL 218</td>
<td>341.5</td>
<td>844.1</td>
<td>1.29</td>
<td>23.28</td>
<td>10.5</td>
<td>58.1</td>
<td>41.9</td>
</tr>
<tr>
<td>ZPPL 318</td>
<td>316</td>
<td>811.7</td>
<td>1.28</td>
<td>24.31</td>
<td>12.2</td>
<td>62.3</td>
<td>37.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>TKW*</th>
<th>TW</th>
<th>D</th>
<th>FI</th>
<th>MR</th>
<th>HEF</th>
<th>SEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZP 600</td>
<td>488.0</td>
<td>788.2</td>
<td>1.27</td>
<td>34.3</td>
<td>12.7</td>
<td>55.8</td>
<td>44.2</td>
</tr>
<tr>
<td>ZP 606</td>
<td>474.0</td>
<td>777.0</td>
<td>1.26</td>
<td>48.2</td>
<td>11.3</td>
<td>57.9</td>
<td>59.1</td>
</tr>
<tr>
<td>ZP 666</td>
<td>356.0</td>
<td>806.2</td>
<td>1.28</td>
<td>24.5</td>
<td>10.9</td>
<td>42.7</td>
<td>40.0</td>
</tr>
</tbody>
</table>

* TKW = 1000-kernel weight (g), TW = test weight (kg m⁻³), D = density (g cm⁻³), FI = floatation index (%), MR = milling response (s), HEF = hard endosperm fraction, (%), SEF = soft endosperm fraction (%)

DISCUSSION

The second half of the 20th and the first decade of the 21st century are characterised by a great success achieved in maize breeding and the production of fundamental maize seed, hybrid maize seed of high quality and of commercial maize. The number of plants per area unit has been increasing since 1978. This programme was referred to as a “plant density” programme and it further directly affected the yield increase of high quality fundamental and hybrid maize seed (Radenović et al., 1978, 2001a, b). In addition, a programme on the development of maize inbred lines with erect top leaves was established at the same time as the “plant density” programme. It was considered that inbreds with the erect top leaves were the closest to the proposed efficient photosynthetic model (Radenović et al., 1978; Radenović and Grodzinski, 1998; Radenović et al. 2000, 2001a, c, 2003, 2004a). The complementary and mass implementation of these programmes led to very important results in both, maize breeding and the hybrid seed production (Ivanović et al., 1995; Trifunović, 1986; Trifunović et al., 2000; Dumanović, 1986; Kojić and Ivanović, 1986). New and numerous hybrids for grain and silage were developed and grown on large areas due to their high yielding potential and the appropriate quality of the plant and the grain (Duvick, 1984; Russell, 1986; Dumanović, 1986; Hallauer, 1988; Kojić and Ivanović, 1986; Ivanović et al., 1995).
The special contemporary breeding studies have been performed on top leaves of maize inbred lines. In recent times, the ear leaves have been particularly observed, but also other top leaves up to the tassel. The most efficient and the longest photosynthetic processes necessary for the maize plant have been achieved by these leaves (Radenović and Grodzinski, 1998). According to the stated, a hypothesis that top leaves (above-ear leaves) achieving the efficient photosynthesis has been proposed.

This study was an attempt to answer the following questions by using different interdependent studies and analyses: (1) were there reliable and dominant traits of maize inbred lines with erect top leaves by which planned and satisfactory progress in maize breeding and the high-quality hybrid seed maize production could be achieved? and (2) which traits should such maize inbred lines have?

The gained results of experimental studies can offer at least a partial answer to asked questions. The first series of experiments included the measure of the angle and the leaf area of observed new maize inbred lines with erect top leaves. The results obtained on these traits (Table 1) classify them into important breeding and seed production traits (Radenović et al., 2003, 2004a, b, 2007, 2008, 2010). The second series of experiments encompassed photosynthetic fluorescence studies on conformational and functional changes in chloroplasts and the thylakoid membrane of the intact above-ear leaf of new maize inbred lines. The temperature dependence of thermal processes of DF for the studied maize inbred lines is presented in a form of the empirical procedure (Figure 3). However, the exact results of the temperature dependence of DF for all new maize inbred lines with erect top leaves are presented in Figure 4A, B. The presented results show that the temperature dependence of DF in each of new maize inbred lines with erect top leaves is characterised by typical intersection points of two segments on the thermal curve (Figures 3 and 4A, B). The first typical point occurred on the intersection of the segment a and the segment b and it represented the lowest critical temperature at which the initial change in the DF intensity was observed. The second typical point occurred on the intersection of the segment b and the segment c and it was related to a linear monotony with the angle of the increasing part of the DF intensity curve. Evident changes in the structure of the thylakoid membrane occurred in this region. The third typical point reflected a smaller or a greater rotundity of DF intensity peaks. The breaking “conformational” changes occurred in two intersection points of the segments c and d and the segments d and e. The fourth typical point was related to the linear monotony and the inclination angle of the declining part of the DF intensity curve. This segment of the thermal curve bore the last conformational changes that had occurred in chloroplasts and the thylakoid membrane. These changes can hardly be described as characters of functioning of a living leaf. The typical intersection points designated as f and g almost had no physiological role. The analysed typical intersection points, Figures 3 and 4A, B, can be considered the points characterising new maize inbred lines with erect top leaves, as these points are precisely the points of conformational and functional changes in the thylakoid membrane (Radenović et al., 2003, b, 2004a, b, 2007, 2008, 2010).
All critical temperatures (phase transition temperatures) at which even the slightest conformational changes had occurred in chloroplasts and the thylakoid membranes of new maize inbred lines with erect top leaves were determined by the Arrhenius criterion and the linearisation of the DF temperature dependence. The values of critical temperatures in ºC, their frequency and intermediate distance characterise observed new maize inbred lines with erect top leaves in relation to their tolerance, resistance, flexibility and adaptability not only to increased and high temperatures, but also to drought (Radenović et al., 2001a, b, c, 2002, 2003). The Arrhenius criterion is based on the existence of straight lines. Each Arrhenius straight line represents its activation energy (Ea). The intersection point of two straight lines is designated by a critical temperature. Results of the Ea values in the inclining and declining part of the thermal curve are explained by lesser or greater conformational changes that occur in the molecules of pigments (chlorophyll) in the thylakoid membrane with the temperature increase. Due to such changes, these molecules become more reactive and thereby gain the additional energy that is used in the recombining process of the DF occurrence (Table 2) (Radenović, 1994; Radenović et al., 2001c, 2004a, b).

Presented photosynthetic fluorescence traits of studied new maize inbred lines with erect top leaves can contribute to more exact, rational and expeditious proceedings of breeding processes and the production of high-quality hybrid maize seed and commercial maize, which makes these maize inbred lines exceptionally important.

Achieved results on yields of new and prospective maize hybrids (Table 3) should be considered as preliminary ones. According to the description of breeding, seed production and technological traits, properties and parameters (Table 5), it is obvious that these are stable hybrids with high quality grains. However, it is necessary to find appropriate locations for such hybrids (Banat, Bačka, Srem, Mačva, river valleys...) in which their full genetic potential of the yield can be used.

Gained results (Tables 6 and 7) present physical traits and the chemical composition that especially indicate grain quality of new maize inbred lines and prospective hybrids with efficient photosynthetic functions (Radosavljević et al., 2000; Radenović et al., 2010).

A brief survey of breeding, seed production and technological traits of new inbred lines and prospective maize hybrids with efficient photosynthetic functions (Tables 4 and 5) completes above presented results and contributes to the improvement of modern programmes of both, breeding and current hybrid seed and commercial maize productions.

CONCLUSION

According to obtained results, it can be concluded that the non-invasive photosynthetic fluorescence method can be used in breeding and the production of maize hybrid seed and thereby the estimation of new maize inbred
lines for tolerance, resistance, flexibility and adaptability to increased and high temperatures, as well as, to drought can be performed. The application of the stated non-invasive method resulted in the determination of numerous traits, properties and parameters of the photosynthetic apparatus of new inbred lines and maize hybrids with efficient photosynthetic functions, such as:

- Temperature dependence observed within the range of 24°C to 60°C,
- The critical temperatures at which greater or smaller structural and functional changes occur in chloroplasts the thylakoid membrane were determined,
- Values of activation energy (Ea, kJ/mol) alongside straight lines before and after occurrence of critical temperatures in the thermal chlorophyll DF process were determined,
- Different monotonies of the intensity in the inclining part of the thermal curve was present; these monotonies point out to unequal tolerance, resistance, flexibility, stability and adaptability of new maize inbred lines to increased and high temperatures, as well as, to drought,
- It was shown that observed, new inbred lines maize hybrids have a dominant property of efficient photosynthetic functions,
- A numerous relevant breeding, seed production and technological traits of new maize inbred lines and hybrids with efficient photosynthetic functions were presented,
- A functional dependence of yields of prospective maize hybrids for eight locations in Serbia was established,
- It was established that commercial maize of studied new and prospective hybrids is of high quality that provides its diverse utilisation.

REFERENCES

Radenović, Č., Ristanović, D., Trifunović, V. (1978): The theoretical and the development programme on the increase of the plant number per area unit for the development of erect leaf maize lines and for their more effective application in breeding. The internal note, Maize Research Institute, Zemun Polje, Belgrade, pp. 1–3.

ГЕНЕТИЧКЕ И ХЕМИЈСКО-ФИЗИЧКЕ ПРЕДИСПОЗИЦИЈЕ НОВИХ ЛИНИЈА И ХИБРИДА КУКУРУЗА СА ЕФИКАСНИМ ФОТОСИНТЕЗОМ

Чedomir Н. Раденовић1,2, Миломир Р. Филиповић1, Милица М. Радосављевић1, Живота В. Јовановић1, Жељко С. Кантовић1, Миодраг М. Толимири1, Никола М. Гричић1, Милош С. Цревар1, Милан Д. Стевановић1

1 Институт за кукуруз, Земун Поље, Слободана Бајића 1, 11085 Београд, Земун, Србија
2 Факултет за физичку хемију, Универзитет у Београду. Студентски трг 12, 11000 Београд, Србија

Резиме

Проучаване су две нове инбред линије кукуруза: ZPPL 218 и ZPPL 318 и са њима створени перспективни хибриди ZP 600, ZP 606 и ZP 666 за које је доказано да поседују доминантно својство ефикасног фотосинтетичког модела што се успешно користи у оплемењивању, савременим технологијама за производњу хибридног семена и меркантилног кукуруза. Овој констатацији иду у прилог изложенi резултати о усправном положају вршних листова нових инбред линија кукуруза и о фотосинтетично-флуоресцентним показатељима: промени интензитета закаснеле флуоресценције хлорофила у њеном току и динамици, Аренијусовом критеријуму за одређивање критичних температура (температуре фазних прелаза) и о енергији активације као мерi структурних промена у хлоропластима и тилакоидној мембрани. У раду се анализира структура зрна укључујући и његове физичке и хемијске показатеље нових инбред линија и хибрида кукуруза. Укупно изложенi резултати показују да су својства нових инбред линија и хибрида кукуруза заснована на природи структурних и функционалних промена, које се одигравају у хлоропластима и тилакоидној мембрани као и на прогресивним ефektима у модерном оплемењивању, савременој производњи хибридног семена и меркантилног кукуруза.

КЉУЧНЕ РЕЧИ: закаснела флуоресценције хлорофила, Zea mays L., зрно, линија, лист, тилакоидна мембрана, фотосинтетички модел, хибрид

ACKNOWLEDGEMENT

These studies were mainly supported by the Maize Research Institute, Zemun Polje, and partially by the Ministry of Science and Technological Development of the Republic of Serbia (Projects: 03E211, 03E22, 142025, TR-20003, TR-20007, TR-20014).
Čedomir N. Radenović 1,2*, Miloš V. Beljanski 3, Georgij V. Maksimov 4 i Dragomir R. Stanisavljev 2

Laboratory of Biophysics, Maize Research Institute, Zemun Polje, Belgrade, Serbia
1Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
2Institute of General and Physical Chemistry, Belgrade, Serbia
3Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia

VARIABLE MECHANISMS OF ACTION OF LITHIUM DURING GENERATING OF MEMBRANE POTENTIAL OSCILLATIONS ACROSS THE EXCITABLE MEMBRANE OF THE NITTELA CELL**

ABSTRACT: This study presents results on variable mechanisms of lithium transport processes during generating of membrane potential oscillations across the very excitable membrane of the Nittela cell. Generating of several classes of oscillations, single and local impulses of the membrane potential, were presented in dependence on effects of a high LiCl concentration (10 mM), with which the cell membrane is very excited. Results on membrane potential oscillations are presented, and then some of oscillogram parameters were displayed. The assertion is that oscillations of the membrane potential are caused by total oscillatory transport processes: Li⁺, K⁺, Na⁺ and Cl⁻ across the very excitable cell membrane. The paper presents the hypothesis on mechanisms of oscillatory transport processes of ions (Li, Na, K and Cl) expressed over different classes of oscillations, single and local impulses of the membrane potential across the excitable membrane of the Nittela cell.

KEY WORDS: excitable membrane, lithium, membrane potential, Nittela cell, oscillation parameters, oscillatory transport

INTRODUCTION

General information on lithium – Lithium is alkaline earth metal, which occurs in nature in the form of different minerals or ions in minerals or sea water (140-270 ppb, parts per billion) (Christmas, 2008). Lithium is found in trace amounts in biological systems lithium. Furthermore, lithium in low concentrations (69-5760 ppb) is found in plants, planktons and inverte-
brates. Almost all tissues and tissue fluids of vertebrates contain lithium (21-763 ppb). Marine organisms have tendency to accumulate lithium in greater concentrations (Chassard-Bouchaud et al., 1984). Its role within biological systems and under physiological conditions has not been yet sufficiently clarified. Recent nutritional studies on mammals show that the presence of lithium in the rate of 1 mg per day affects health of organisms, which suggests that lithium could be classified as an essential biomicroelement. It was observed that a low-dose lithium uptake promotes longevity in humans and metazoans (Zarse et al., 2011). In medicine, lithium in the form of Li-carbonate or Li-citrate, is used to treat bipolar disorder (Ghasemi et al., 2008, 2009, 2010, Baldessarini et al., 2006). In industry, lithium is used in the manufacture of ceramics and glass resistant to high temperatures, and in the production of lubricants resistant to high temperatures, as well as, in the production of Li-ion batteries (Ebensperger et al., 2005).

Lithium-oscillations of the membrane potential – The method of recording biopotentials by means of microelectrodes is being used to study a variable mechanism of action of lithium during generating of membrane potential oscillations, and indirectly during the inducement of the oscillatory lithium transport across the excitable membrane of the *Nittela* cell (Vorobeiv et al, 1967, 1968). A rhythmic fluctuation of the membrane potential was recorded by the minimum improvement of this method (Radenović et al., 1968). However, only in 1976, some bioelectric responses to the membrane of the *Nittela* cell (change in ψ_m, membrane oscillations and single impulses) induced by lithium concentrations were registered for the first time (Radenović, 1976). Somewhat later, typical oscillations ψ_m were registered (Radenović and Penčić, 1970), and then oscillations ψ_m caused by monovalent cations, among which Li$^+$ had also been present, were registered (Radenović et al., 1977). The *Nitella* and *Chara* (freshwater green algae of the family Characeae) were used as the object of studies on membrane potential oscillations induced by lithium. The greatest number of experiments with actions of lithium was performed on the *Nitella mucronata* cells. These cells are large (diameter: 0.6-1.0 mm, length: 40-80 mm) and they are suitable for bioelectrochemical and electrophysiological studies. Today, the stated objects are considered the conventional model object for studies of complex membrane-transport processes (Vuksonić et al., 1998, Radenović, 2001, Radenović et al., 2006).

Results obtained in scarce previous studies are not sufficient to develop a complete and complex idea of the oscillatory transport of Li$^+$ across the very excitable membrane of the *Nitella* cell. Some new issues related to oscillatory membrane processes arose. It was assumed that Li$^+$ was their inevitable inducer, but not the only (Damjanić and Radenović, 1971, Radenović and Vučinić, 1976, 1985, Radenović, 1985a). New issues are primarily related to various oscillations of transport processes caused by effects of shocking levels of lithium ions (Radenović et al., 1977, 2006).

The special attention in this study was paid to variable mechanisms of lithium transport processes during generating oscillations ψ_m across the very excitable membrane of the *Nitella* cell.
MATERIAL AND METHODS

Plant objects – The experiments were performed on cells of freshwater alga *Nitella mucronata*. These cells are large (diameter: 0.6-1.0 mm, length: 40-80 mm) and they are suitable for bioelectrochemical and electrophysiological studies. Growing conditions, object preparations, treatment prior and during measuring of ψ_m were described in previously published papers (Radenović and Penčić, 1970, Radenović, 1974, Radenović and Vučinić, 1976, Radenović et al., 1977). It is generally accepted that these cells represent a classical model system for diverse studying on membrane-transport processes (Radenović, 1982, 1985a, 1985b, 2001, Vukšanović et al., 1998, Radenović et al., 2005, 2006).

Method – The measurement of rhythmic and membrane bioelectric signals: single impulses, sequences of impulses and different forms of membrane potential oscillation (ψ_m, mV) was performed after the method with a microelectrode technique, which was previously described in principle and details in studies carried out by Radenović and Penčić, 1970, Radenović, 1974, Radenović and Vučinić, 1976, Radenović et al., 1977, (Fig. 1).

![Fig. 1. – Schematic diagram of the method of measurement of the membrane potential across the *Nitella* cell applying the microelectrode technique: ME$_1$ – microelectrode in the vacuole, ME$_2$ – microelectrode in the cell wall, RE – reference electrode, A$_1$ and A$_2$ – amplifiers, REC – recorders.](image)
RESULTS

The initial measurement of the equilibrium resting membrane potential (ψ_m, mV) is generally accepted as a rule, for bioelectric (bioelectrochemical and electrophysiological) measurements across membranes of the Nitella cell. If its value ranges from -80 mV to -150 mV the experiment on the membrane of the Nitella cell can be continued. It should be known that the value of the uniform resting membrane potential in the Nitella cell depends on a physiological state of the cell, growing conditions, age, as well as, on the season (Radenović, 1974).

There is a possibility to observe different classes of membrane potential oscillations, single and local impulses within numerous bioelectric studies (Radenović, 1985b). In order to recognise the oscillatory response easily the following is given:

- Local impulse can occur in the initial part of the oscillation, but it can be clearly pronounced and easily registered.
- Single impulse can be pronounced more often and more regularly and can simply be registered.
- Sequences of single impulses occur often and they are simply registered. In literature, they are referred to as membrane potential oscillations.
- It is shown that membranes of the Nitelle cell are capable, under effects of selected stimuli, to generate local and single impulses and repetitive membrane potential oscillations (Radenović and Pencić, 1970, Radenović and Vučinić, 1976, Radenović et al., 1977).

This paper presents four examples of Li-oscillations of the membrane potential.

1. Instantaneous generation of lithium-oscillations in the direction of membrane potential depolarisation

Generation of lithium-oscillations in the direction of depolarisation of the membrane potential is given in the form of six different classes (Fig. 2.1-2.6). Their generation is explained by the effects of the concentration gradient of lithium (10 mM), sodium (1 mM), and potassium (0.1 mM). Furthermore, the electrochemical potential gradient and the electric potential gradient also affect the generation of lithium oscillations. They induce the formation of a strong electric field that pulls out the ions (Li, Na and K) and in such a way, their transport is provided. The intensity and dynamics of the overall transport processes of the ions (Li, Na, and K) are significantly affected by the nature of movements of active molecules (proteins, lipids and pigments): rotational, flip-flop and lateral. When the membrane is very excited, the mentioned types of movements of active molecules and the effects of stated gradients establish the interdependence of processes that affect six different classes of oscillations. Therefore, the interdependence of processes of competitiveness of ions (Li, Na, and K) in the overall transport processes, the dominance of certain types of movements of active molecules and the very excitable membrane, determine parameters and form of six classes of membrane potential oscillations.
Fig. 2.1-2.6. – Instantaneous generation of lithium-oscillations in the direction of membrane potential depolarisation triggered off by the exchange of the standard solution for the LiCl solution of the shocking concentration of 10 mM.

Symbols: standard solution (SR: 0.1 mM KCl + 1.0 mM NaCl), ψ_1 – equilibrium membrane potential prior to oscillating, ψ_2 – equilibrium membrane potential generated by effects of Li after oscillating, ψ_{os} – class of membrane potential oscillations established by effects of shocking LiCl concentration, arrows – indicate the moment when SR was replaced with LiCl solution of the shocking concentration. This Fig. shows six different classes of membrane potential oscillations.

The stated classes of Li-oscillations of the membrane potential are characterised by non-standard parameters (Tab. 1).
Tab. 1. – Non-standard parameters of lithium-oscillations in the direction of membrane potential depolarisation

<table>
<thead>
<tr>
<th>Figures designations</th>
<th>(\Psi_1)</th>
<th>(\Psi_2)</th>
<th>Number of impulses</th>
<th>Duration of oscillation, (min)</th>
<th>Type of oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1.</td>
<td>-155</td>
<td>-110</td>
<td>10</td>
<td>shorter than standard</td>
<td>symmetric damped</td>
</tr>
<tr>
<td>Fig. 2.2.</td>
<td>-160</td>
<td>-60</td>
<td>10</td>
<td>shorter than standard</td>
<td>unsymmetric damped</td>
</tr>
<tr>
<td>Fig. 2.2.</td>
<td>-135</td>
<td>-55</td>
<td>18</td>
<td>within limits of standard</td>
<td>symmetric / unsymmetric damped</td>
</tr>
<tr>
<td>Fig. 2.4.</td>
<td>-120</td>
<td>-40</td>
<td>28</td>
<td>longer than standard</td>
<td>unsymmetric damped</td>
</tr>
<tr>
<td>Fig. 2.5.</td>
<td>-150</td>
<td>-30</td>
<td>16</td>
<td>somewhat shorter than standard</td>
<td>irregularly – symmetric damped</td>
</tr>
<tr>
<td>Fig. 2.6.</td>
<td>-90</td>
<td>-30</td>
<td>14</td>
<td>somewhat longer than standard</td>
<td>differently damped</td>
</tr>
</tbody>
</table>

2. Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation

Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation is presented in the form of three different classes (Fig. 3.1-3.3). They are affected by concentration gradients of competitive ions (Li, Na, and K) in transport processes. The certain classes of membrane potential oscillations \((\psi_m, \text{mV})\), (Fig. 3.1-3.3) appear when dominance of particular types of movements of active molecules (protein, lipids and pigments) occur. A gradual generation of the equilibrium membrane potential \((\psi_1)\) in the direction of its repolarisation (Fig. 3.3) precedes the occurrence of membrane potential oscillations. It is believed that Na\(^+\) causes such generation of \(\psi_1\). However, \(\psi_{os}\) oscillations are different from all three classes of membrane potential oscillations \((\psi_m, \text{mV})\), (Fig. 3.1-3.3).

These classes of lithium-oscillations of the membrane potential (Fig. 3.1-3.3) can be analysed through non-standard parameters (Tab. 2).

Tab. 2. – Non-standard parameters of delayed generation of lithium-oscillations

<table>
<thead>
<tr>
<th>Figures designations</th>
<th>(\Psi_1)</th>
<th>(\Psi_2)</th>
<th>Number of impulses</th>
<th>Duration of oscillation, (min)</th>
<th>Type of oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.1.</td>
<td>-95</td>
<td>-60</td>
<td>16</td>
<td>8</td>
<td>irregularly – unsymmetric damped</td>
</tr>
<tr>
<td>Fig. 3.2.</td>
<td>-120</td>
<td>-55</td>
<td>20</td>
<td>15</td>
<td>unsymmetric damped</td>
</tr>
<tr>
<td>Fig. 3.3.</td>
<td>-100</td>
<td>-60</td>
<td>8</td>
<td>10</td>
<td>irregularly – unsymmetric damped</td>
</tr>
</tbody>
</table>
Fig. 3.1-3.3. – Delayed generation of lithium-oscillations in the direction of membrane potential depolarisation triggered off by the exchange of SR for the LiCl solution of shocking concentration (10 mM). Symbols are the same as in Fig. 2.1-2.6. This Fig. shows three different classes of membrane potential oscillations.
3. Instantaneous generation of lithium-oscillations in the direction of membrane potential repolarisation

Generation of lithium-oscillations in the direction of membrane potential repolarisation rarely occurs and it is presented in Fig. 4. Basically, the explanation of this class of membrane potential oscillations is identical as in Fig. 2.1-2.6 and Fig. 3.1-3.3. Different physical and chemical conditions occurring in the very excitable membrane lead, not so infrequently, to interdependence of various processes that move, some one way and some in the opposite direction. Such a state of interdependent processes refers to both, transport processes of ions (Li, Na, and K) and frequent changes in types of movements of active molecules, first of all proteins. Bearing in mind herein stated, it is possible to understand “anomalies” occurring during generation of ψ_2, and in the case of specific oscillation ψ_{os} presented in Fig. 4.

![Graph](image)

Fig. 4. – Instantaneous generation of lithium-oscillations in the direction of membrane potential repolarisation triggered off by the exchange of SR for the LiCl solution of the shocking concentration of 10 mM. Symbols are the same as in Fig. 2.1-2.6. This Fig. shows one class of membrane potential oscillations.

Lithium-oscillations in the direction of membrane potential repolarisation (Fig. 4) have the following non-standard parameters: $\psi_1 = -120$ mV, $\psi_2 = -130$ mV, number of impulses = 5, duration of lithium-oscillation = 7 min and the type of lithium-oscillation is irregular, unsymmetric and undamped.

4. Instantaneous generation of lithium with the unaltered level of membrane potential prior to and after oscillating

Generation of lithium with the unaltered level of membrane potential prior to and after oscillating extremely rarely occurs and it is presented in Fig. 5.

Lithium-oscillations with the unaltered level of membrane potential prior to and after oscillating (Fig. 5) was triggered off by the exchange of SR for the LiCl solution of a shocking concentration and has the following non-standard parameters: $\psi_1 = -100$ mV, $\psi_2 = -100$ mV, number of impulses = 8, duration of lithium-oscillation = 4 min and the type of lithium-oscillation is less regular, unsymmetric and damped.
Discussion on general information on lithium – A molecular mechanisms of effects of lithium are still insufficiently clarified (Klein and Melton, 1996). According to its ionic radius Li$^+$ is the most similar to Mg ion, which suggests its possible competition with the activities of Mg ion. It is considered that Li ion can affect inactivation of enzyme GSK3β, which can cause resetting of the circadian clock in the brain (Yin et al., 2006). Recently it has been suggested that lithium could interfere with NO regulatory pathway, which has a key role in the nervous system (Ghasemi et al., 2008). It was also shown that lithium could interfere with inositol phosphatases, i.e. could inhibit inositol monophosphatase (Eina et al., 1998). Besides, it is considered that the Li ion interferes with the transmembrane transport of monovalent and bivalent cations of nerve cells due to its similarity with them (Na, K and Mg, Tab. 3) (Lassalles et al., 1981).

Tab. 3. – Physical and chemical characteristics of Li, K, Na and Mg

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Li</th>
<th>K</th>
<th>Na</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic radius (Å)</td>
<td>1.33</td>
<td>2.03</td>
<td>1.57</td>
<td>1.36</td>
</tr>
<tr>
<td>Ionic radius (Å)</td>
<td>0.60</td>
<td>1.33</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td>Hydrated radius (Å)</td>
<td>3.40</td>
<td>2.32</td>
<td>2.76</td>
<td>4.67</td>
</tr>
<tr>
<td>Polarizing power (z/r²)</td>
<td>2.80</td>
<td>0.56</td>
<td>1.12</td>
<td>2.05</td>
</tr>
<tr>
<td>Electronegativity</td>
<td>1.0</td>
<td>0.80</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Discussion on studies presented in this paper. – Results obtained on oscillatory bioelectric signal (local impulses, isolated single impulses, sequence of local and single impulses and typical oscillation of the membrane
potential), presented in this paper, are only a smaller part of our long-term studies on total membrane potential oscillations, and indirectly on oscillatory transport of ions (K, Na, Ca, Li, and Cl) across excitable cell membrane (Rađenović, 1982, 1985a, Vučinić et al., 1987, Vuletić et al., 1985, 1987). This is especially true for lithium-oscillations of the membrane potential, which are very specific and as such give the possibility to analyse a number of questions to which answers are not yet known in detail.

Some parameters of lithium-oscillations of the membrane potential have already been studied (Rađenović et al., 1977, Rađenović, 1982, 1985a, 1985b). However, they should be mentioned considering that there is a possibility to establish the analogy between oscillations in physics and biology (Vuksanović et al., 1998, Koljs et al., 1993). These parameters are: basic level of the membrane potential oscillation, impulse spike potential (the level up to which a membrane is depolarised during generating single or successive impulses and the complete oscillation), amplitude of single or successive impulses generated during the membrane potential oscillation, the relationship of the amplitude of one impulse with the amplitude of the following or previous impulse in the selected membrane potential oscillation, impulse interval (the duration between two successive impulses) and other standard parameters given in Tab. 4 (Rađenović et al., 1977).

Tab. 4. – Standard parameters of membrane potential oscillations induced by effects of standard concentrations of Li, Na and K on the membrane of the Nitella cell

<table>
<thead>
<tr>
<th>Ions</th>
<th>Oscillation duration (min)</th>
<th>Number of impulses</th>
<th>Impulse amplitude (mV)</th>
<th>Frequency (imp/min)</th>
<th>Damping factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺</td>
<td>11.7</td>
<td>13</td>
<td>39±14</td>
<td>1.44±0.6</td>
<td>1.195</td>
</tr>
<tr>
<td>K⁺</td>
<td>1.9</td>
<td>6</td>
<td>39±19</td>
<td>3.62±1.4</td>
<td>2.153</td>
</tr>
<tr>
<td>Na⁺</td>
<td>24.1</td>
<td>24</td>
<td>54±16</td>
<td>1.04±0.5</td>
<td>1.081</td>
</tr>
</tbody>
</table>

In addition, attention should be paid to issues such as the kinetics of single impulses and the kinetics of the complete oscillation of the membrane potential. The important issues are the character of occurrence and behaviour of rhythms of bioelectric signals (Damjanoić and Rađenović, 1971, Rađenović and Vučinić, 1976, Vučinić et al., 1987), but also effects of concentrations of selected ions on generating membrane potential oscillations (Vuletić et al., 1985, 1987). The above-mentioned issues and parameters characterising membrane potential oscillations are directly dependent on transport processes occurring across the very excitable cell membrane (Rađenović, 1998).

As it is known, systems with one or two degrees of freedom are the basis for studying the mechanism of the membrane potential. Furthermore, different types of movements of lipids, proteins, pigments and other complex-bound structures contribute to the mechanism of the total transport processes across the very excitable cell membrane (Rađenović, 1998). These types of movements within the very excitable membrane can be as follows: lateral movement.
When the degree of excitability of the cell membrane is higher, then the variable types of movements of active molecules (lipids, proteins and other molecules) are more significant in their intensity, dynamics and diversity, which affects the total ion transport processes (Koljs et al., 1993, Radenović, 1998), especially lithium transport processes (Radenović, 1976, Radenović et al., 1977, 2005, 2006).

As it is known, the transport of ions (including lithium) across the very excitable cell membrane is characterised by passive and active ion transport processes. Diffusion is considered to be a dominant bearer of passive transport processes in the very excitable membrane. It is expressed as a simple, limited, and facilitated diffusion. It is clear that there are at least three promoters of the passive ion transport: concentration gradient, electrochemical potential gradient, and electric potential gradient.

Obtained results, presented in this paper, indicate that lithium-oscillations in the direction of membrane potential depolarisation occurs under particular conditions (Fig. 2.1-2.6, Tab. 1). Moreover, delayed generation of lithium-oscillations in the direction of membrane potential depolarisation occurs (Fig. 3.1-3.3.; Tab. 2). Generation of lithium-oscillations in the direction of membrane potential repolarisation also occurs (Fig. 4). It is interesting to mention that generation of lithium with the unaltered level of the membrane potential also occurs prior to and after oscillating (Fig. 5).

CONCLUSION

Based on the gained results and the discussion, as well as, our overall information on oscillatory processes induced by Li, K, Na, NH₄ and Ca, we present the following hypothesis:

• Lithium-oscillations (local and single impulses and other classes of oscillations) of the membrane potential occur when the cell membrane is very excited. Such a membrane, as a rule, is accompanied by the activities of ions K⁺, Na⁺, Li⁺ and Cl⁻, which are not constant under such conditions in subcellular components (vacuole, cytoplasm, and cell wall).

• The usual ion transport processes are disturbed under effects of lithium: first, diffusion (concentration gradient is altered), electrodiffusion (electrochemical potential gradient is changed), biocurrents (electric potential gradient is altered), and fluid flow (hydrostatic pressure gradient is modified). The mentioned dynamic states determine the degree of excitability of the very excitable cell membrane. Hence, when the cell membrane is very excited, then local, single and complete membrane potential oscillations inevitably occur. These oscillations occur in the form of certain classes, but also in the form of different irregularities (chaos). At the same time and under such conditions,
oscillating of active proteins starts in the cell membrane, and they rhythmically, regularly, irregularly (state of chaos) induce the transport of ions, Na, K and Li, across the very excitable membrane, which takes an oscillatory regime. In such a state, transport processes of ions, K, Na and Li, adopt a co-operative character, which induce conformational changes of active ion channels that stretch and contract within the oscillatory regime, and thereby rhythmically modify transport ability of the excitable cell membrane for ions of K, Na and Li.

- Under such conditions, oscillatory changes occur in cell supplying, and thereby in supplying the very excitable membrane with energy: electric, osmotic and chemical.

- Moreover, the bonds between membrane transport processes and metabolism are disturbed, i.e. weakened. This is particularly related to weakening of the self-regulation of the matter within each cell.

REFERENCES

Radenović, Č., Vučinić, Ž. (1976): Simultaneous measurement of the cell wall and the vacuoles during the oscillatory response to the Nitella cell. Physiol. plant. 37: 207–212.

ПРОМЕНЉИВИ МЕХАНИЗМИ ДЕЛОВАЊА ЛИТИЈУМА ПРИ НАСТАЈАЊУ ОСЦИЛАЦИЈА МЕМБРАНСКОГ ПОТЕНЦИЈАЛА НА ПОБУЂЕНОЈ ЋЕЛИЈСКОЈ МЕМБРАНИ NITELLE

Чедомир Н. Раденовић1,2, Милош В. Бељански3, Георгиј В. Максимов4 и Драгомир Р. Станисављев6

1Биофизичка лабораторија, Институт за кукуруз, Земун Поље, Београд, Србија
2Факултет за физичку хемију, Универзитет у Београду, Београд, Србија
3Институт за општу и физичку хемију, Београд, Србија
4Катедра за биофизику, Биолошки факултет, Московски државни универзитет “М. В. Ломоносов”, Москва, Русија

Резиме

У овом раду су изложени резултати проучавања променљивог механизма транспортних процеса литијума, при настајању осцилација мембранског потенцијала, на екстремно побуђеној мембрани ђелије Nitelle. Показано је настајање неколико класа осцилација, појединачних и локалних импулса мембранског потенцијала, у зависности од деловања шокантне концентрације (10 mM) LiCl, са којом се ђелијска мембрана екстремно побуђује. Дају се резултати осциловања мембранског потенцијала, а затим се излажу неки од параметара осцилограма. Тврди се да је осциловање мембранског потенцијала условљено укупним осцилаторним транспортним процесима: Li, К, Na и Сl кроз екстремно побуђену ђелијску мембрану. Изложена је хипотеза о механизмима осцилаторних транспортних процеса јона (Li, Na, K и Cl) изражена преко различитих класа осцилација, појединачних и локалних импулса мембранског потенцијала кроз екстремно побуђену мембрану ђелије Nitelle.

КЉУЧНЕ РЕЧИ: литијум, мембрански потенцијал, осцилаторни транспорт, параметри осциловања, побуђена мембрана, ђелија Nitelle
ABSTRACT: For the investigation of the grain size distribution of the material washed out from the piping, we used 20 samples originating from different places on the Danube and the Tisza rivers. The grading characteristics of these samples were investigated based on selected grain sizes and the uniformity of gradients. Based on the investigations it has become possible to identify which grain size fractions are likely to be washed out, and how to characterize those fractions. Based on the grain size distribution curves it has been made possible to define the boundaries of the zone susceptible to piping.

The zone limits of granular soils liquefied by earthquakes and the zone limits of the soil out washed from piping are very similar. This apparent correspondence already formerly raised the hypothetic question of whether piping occurring during high flood can be simulated by shape to similar surface liquefaction phenomena experienced during earthquakes, as in both cases a volcanic cone is formed through the crater of which water is constantly issuing, dragging away solid particles.

KEY WORDS: coefficient of uniformity, grain size distribution, hydraulic failure, piping

INTRODUCTION

This paper places particular emphasis on a special feature in the protection against piping directing attention to some important aspects of flood defense and to the need for going into a deeper study of certain details of the phenomenon of piping. Undoubtedly, we know a great deal more about piping than we did just 30 years ago, nevertheless investigations need be continued. Research has been pursued in various fields in an attempt to find answers to some peculiar but very real problems, as follows:

• In the case of recorded actual piping’s the mean hydraulic gradient only reached a value that was as low as less than one fifth of the allowable value, yet failure conditions did occur (Nagy et al., 1994).

• Grading entropy shed light on soils prone to piping from the theoretical side (Lörcz, 1986, 1993, Lörcz et al., 2004, Imre et al., 2008), but the practical approach revealed that in the vicinity of all the piping’s
a particular layer prone to piping failure invariably occurred in the stratified soil (Lőrincz, Nagy, 1995, 2010).

- The giant piping on the Tisza’s (Fig. 1) in year 2000 raised a number of questions since piping occurred in the embankment (and not in the subsoil). This phenomenon formerly not heard of is quite possible provided that the material of the embankment is sufficiently loose and the fill contains a layer prone to piping.
- Parallel to what was mentioned above a remarkable development can be observed in international experience, in numerical modeling and in the study of transient phenomena of discreet particles to provide theoretical backing for flood phenomena.

![Fig. 1. – The giant piping on the Tisza’s in year 2000](image)

Formerly little attention was paid to the investigation of material washed out of a piping (Nagy, 2000). The grain size distribution of the washed out material was not tested, nor was it compared to the grading of surrounding soil layers. Now, an important question arises: Is it the entire mass of a soil layer or only certain fractions of the soil that are washed out? During the high flood on the Danube in 2006, samples were taken from a number of piping. Tests on these samples form the backbone of the present paper.
INVESTIGATION SITES

The summary of investigated sites grouped according to the rivers and to the years of occurrence is contained in Table 1. Materials obtained from 12 piping by the river Tisza, 7 by the Danube and 1 by the river Sajó were tested. Based on these samples the effect of a number of factors has also been revealed at the various sites.

Do grading curves of samples taken from piping maximum a few meters away from each other (see e.g. Fig. 3) show a different picture? Piping located close nearby (samples 5 – 8 and 17 – 18 in Table 1) are supposed to give identical grading curves; yet testing experience indicates a difference in the shape of the grain size distribution curves (Graph 1).

Another question also arises as to what differences, if any, can be between the grain size diagrams of two samples taken from different parts of the same piping (Samples No. 2-3, 5-6, 14-15 and 19-20 respectively in Table 1). It can be said that a difference does exist. Finer particles are conveyed and then deposited by the water farther away from the piping. Therefore, at the central part where water is issuing in concentrated flow sedimentation of the coarsest grains is expected, while finer grains settle at gradually increasing distances. As can be seen in Graph 2, the difference between the grading curves can be relatively great.
Graph 2. – Grain size distribution curves of two samples taken from different parts of the same piping (Soils No. 19–20 in Tables 1 and 2)

Fig. 2. – Piping (partly behind the car) at the edge of an ox-bow near Bölcse (2006), with a difference in elevation of minimum two meters between ground level at the ox-bow and ground level at the adjacent high bank (Areas No. 9–10 in Tables 1 and 2)
It is a common premise that any test is worth as much as the reliability of the underlying data. In geotechnics, determination of the grain size distribution is a routine test and as such can be relied upon for correctness of test results. Yet, any theoretical conclusion is of no use if the determination of the grain size distribution curve is unreliable. The laboratory tests referred to in this set of tests were carried out at different laboratories, though the majority of the samples were tested at the Geotechnical Laboratory of the Budapest University of Technology.

<table>
<thead>
<tr>
<th>Number</th>
<th>Year</th>
<th>River, location</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1998</td>
<td>Tisza, right bank</td>
<td>Tivadar, inner side</td>
<td>Nagy (1999)</td>
</tr>
<tr>
<td>4</td>
<td>2006</td>
<td>Duna, right bank 12+150</td>
<td>Abda</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2006</td>
<td>Duna, right bank 41+206</td>
<td>Dombor, small piping</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2006</td>
<td>Duna, right bank 41+206</td>
<td>Dombor, small piping, crater</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2006</td>
<td>Duna, right bank 41+206</td>
<td>Dombor, big piping</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2006</td>
<td>Duna, right bank 41+206</td>
<td>Dombor, big piping, crater</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2006</td>
<td>Duna, right bank 79+420</td>
<td>Bölske, ox-bow</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2006</td>
<td>Duna, right bank 79+420</td>
<td>Bölske, ox-bow</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2006</td>
<td>Tisza, right bank 61+075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2006</td>
<td>Tisza, right bank 71+300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2006</td>
<td>Tisza, left bank 13+250</td>
<td>Tiszasas, marshy bushland</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2006</td>
<td>Tisza, left bank 13+580</td>
<td>Tiszasas, edge of crater</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2006</td>
<td>Tisz, left bank 13+580</td>
<td>Tiszasas, centre of crater</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2010</td>
<td>Sajó, left bank 6+266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2010</td>
<td>Tisza, Millér</td>
<td>Small piping</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2010</td>
<td>Tisza, Millér</td>
<td>Large piping</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2010</td>
<td>Tisza, Tiszakürt</td>
<td>Outer part of crater</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2010</td>
<td>Tisza, Tiszakürt</td>
<td>Inner part of crater</td>
<td></td>
</tr>
</tbody>
</table>

SHAPE OF THE GRAIN SIZE DISTRIBUTION CURVE

The grain size distribution curves of the material ejected from piping have continuous smooth shape characteristic of natural soils. When the grain size distribution curves of all the samples tested are plotted in the same graph, they clearly define a distinct zone. The types of soil located within this zone (silty sand, fine sand, sand) exhibit no considerable cohesion, and at the same time the mass of their individual soil particles is small enough allowing them to be readily removed from their position by seeping water (Graph 3.). It should be noted that under sufficiently high hydraulic gradients any type of soil (or even rock) could be washed out by piping. What is significant in this respect
is that for soils within the domain in Graph 3 the lowest hydraulic gradient is necessary.

The zone of grain size distribution curves of all the soils tested is shown again in Graph 4. This zone shows a striking similarity to the zone representing the limits of granular soils liquefied by earthquakes. The grading limits shown in Graph 2 are copied onto a graph presented in Smoltczyk’s book (2002) defining various degrees of hazard for liquefaction due to earthquake. (Zone 1: moderately susceptible, Zone 2: highly susceptible). This apparent correspondence already formerly raised the hypothetic question of whether piping occurring during high flood can be simulated by shape to similar surface liquefaction phenomena experienced during earthquakes, as in both cases a volcanic cone is formed through the crater of which water is constantly issuing, dragging away solid particles. The apparent similarity of the zones of grain size distribution, curves in the two cases (Graph 3) strongly suggest that the two phenomena should indeed be closely related.

Following the reasoning one cannot help raising a question concerning the similarity of surface phenomena observed in both cases and the similarity of grading: i.e. whether piping constitutes a pseudo-static liquefaction or liquefaction (e.g. one triggered off by earthquake) constitutes a dynamic piping.

It should be noted that several expert’s reports have recently been prepared dealing with failure of tailing dams where breach of the dam was judged
to have been caused by liquefaction but in none of those cases was failure attributable to earthquake effect. This means that liquefaction may also occur under static loading conditions.

Graph 3. – Grain size distribution curves and limiting envelops of the critical zone

Graph 4. – Zones of soils most susceptible to liquefaction (Smoltczyk, 2002) with limiting lines for the zone of piping added
THE GRAIN SIZE PERTAINING TO 10 PERCENT PASSING

In the study of the grain size distribution a crucial point is the determination of the grain size pertaining to 10 percent passing (see Table 2). This grain size is determinant in respect of seepage phenomena and also in assessing the uniformity of grading. As can be seen in Graph 5, in none of the tests on material washed out of the piping was grain sizes $d_{10} > 0.33$ or $d_{10} < 0.0033$ identified. This means that a domain of grain sizes d_{10} spanning over two orders of magnitude is affected in respect of washing out by piping. Frequency values should normally decrease towards both sides of the histogram but probably because of the relatively small number of elements and the few number of categories this tendency does not appear here.

Graph 5. – Frequency distribution of d_{10} values in the material washed out by piping
Tab. 2. – Some characteristics of the material washed out by piping

<table>
<thead>
<tr>
<th>Number</th>
<th>d_{10}</th>
<th>Uniformity coefficient (C_U)</th>
<th>Description of soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>3.25</td>
<td>Fine sand</td>
</tr>
<tr>
<td>2</td>
<td>0.025</td>
<td>8.4</td>
<td>Silty sand</td>
</tr>
<tr>
<td>3</td>
<td>0.036</td>
<td>4.6</td>
<td>Silty sand</td>
</tr>
<tr>
<td>4</td>
<td>0.0071</td>
<td>17.8</td>
<td>Silty sand</td>
</tr>
<tr>
<td>5</td>
<td>0.007</td>
<td>13.9</td>
<td>Silty sand</td>
</tr>
<tr>
<td>6</td>
<td>0.041</td>
<td>2.4</td>
<td>Sand</td>
</tr>
<tr>
<td>7</td>
<td>0.026</td>
<td>4.3</td>
<td>Sand</td>
</tr>
<tr>
<td>8</td>
<td>0.006</td>
<td>15.2</td>
<td>Silty sand</td>
</tr>
<tr>
<td>9</td>
<td>0.026</td>
<td>6.5</td>
<td>Silty sand</td>
</tr>
<tr>
<td>10</td>
<td>0.016</td>
<td>10.8</td>
<td>Silty sand</td>
</tr>
<tr>
<td>11</td>
<td>0.056</td>
<td>2.1</td>
<td>Fine sand</td>
</tr>
<tr>
<td>12</td>
<td>0.049</td>
<td>3.5</td>
<td>Silty sand</td>
</tr>
<tr>
<td>13</td>
<td>0.106</td>
<td>2.2</td>
<td>Fine sand</td>
</tr>
<tr>
<td>14</td>
<td>0.073</td>
<td>2.3</td>
<td>Fine sand</td>
</tr>
<tr>
<td>15</td>
<td>0.051</td>
<td>2.6</td>
<td>Fine sand</td>
</tr>
<tr>
<td>16</td>
<td>0.007</td>
<td>12.6</td>
<td>Silty sand</td>
</tr>
<tr>
<td>17</td>
<td>0.007</td>
<td>6.1</td>
<td>Silty sand</td>
</tr>
<tr>
<td>18</td>
<td>0.0083</td>
<td>5.9</td>
<td>Silty sand</td>
</tr>
<tr>
<td>19</td>
<td>0.17</td>
<td>2.2</td>
<td>Sand</td>
</tr>
<tr>
<td>20</td>
<td>0.13</td>
<td>2.3</td>
<td>Sand</td>
</tr>
</tbody>
</table>

Fig. 4. – Piping at Abda (2006), some 20 m away from the dyke toe (Area No. 4 in Tables 1 and 2)
Uniformity coefficient (C_U) values of the washed out soils are shown in Table 2. The highest value was $C_U = 17.8$ and the mean value was $C_U = 6.4$. No soil with $C_U < 2.0$ was identified. The frequency distribution of the uniformity coefficients can be seen in Graph 6, where the category of $C_U = 2-5$ is the most populous, containing more than half of the samples tested. Fine-grained soils with low coefficient of uniformity are the ones that can be most readily washed out or removed from their position, since they have no cohesion and the mass of their grains is small.

Graph 6. – Frequency distribution of uniformity coefficients in the material washed out by piping

CORRELATION BETWEEN UNIFORMITY COEFFICIENT AND GRAIN SIZE D_{10}

An evaluation of the relationship between the uniformity coefficient (C_U) and the grain size pertaining to 10 percent by weight passing leads to an inverse relation that is the value of C_U tends to decrease with the increase in d_{10}. In other words, the more course-grained the washed out soils, the more closely
they are to a perfectly uniform single-grained soil. The most astonishing fact is the very tight correlation giving a value of nearly $R = 0.9$! (See Graph 6) In spite of the fact that the samples originated, from various regions of the country, and were tested in several laboratories.

Graph 7. – The relationship between the uniformity coefficients and the grain size pertaining to 10 percent by weight passing

SUMMARY

Piping’s are the most spectacular phenomena preceding and ultimately leading to breach of flood protection dykes. A review of historic data showed that 1 in every 12 to 13 embankment failures was the consequence of piping (Nagy, 2002). Flood defense counter measures to conquer piping are well established and proven, (Péch, 1892, Tápany, Szalai, 1954, Pölgrár et al., 1974, Nagy, 2009), while theoretical treatment of ground failure due to piping is not satisfactorily profound. It is an undisputable fact that we know a great deal more about piping than we did say 30 years ago, but continued research must go on even by resorting to practical experience if necessary. Neither hydraulic criteria, nor structural criteria of piping are known deeply enough. We are surely aware of certain parameters that contribute to the build-up of piping, but their effect cannot yet be quantified. In the case of fully developed piping’s the average hydraulic gradient normally has a value hardly reaching one fifth of the allowable threshold value, yet ground failure does occur. Density conditions have not been properly dealt with, and also little attention has been paid to the testing of material ejected by piping.

This paper looks at the process of piping from the aspect of material structure by focusing on the grain size distribution of the material washed out from the piping. Using 20 samples originating from different regions of Hungary, the grading characteristics of these samples were investigated based on some selected grain sizes and the uniformity gradients. Based on these inves-
tigations it has become possible to identify which grain size fractions are likely to be washed out, and to characterize those fractions whose washing out is not expected. Based on the grain size distribution curves it has been made possible to define the boundaries of the zone susceptible to piping. The investigations provided useful results concerning values of the uniformity gradient and the grain size pertaining to 10 per cent and the relationship between them.

In order to obtain a deeper understanding of the process of piping the question whether the washed out material consists of the entire mass of a layer or only of a grain size fraction within the layer needs be investigated. To this end a more profound knowledge of the environment of the piping would be very important.

Fig. 5. – Piping at the initial section of a trench drain near Tiszakürt in 2010 (Areas No. 19–20 in Tables 1 and 2)

REFERENCES

Péch, J. (1892): Dike defense, Practical guideline for water engineers and flood control experts. In Hungarian.

ПРОУЧАВАЊЕ ПЕСКА У ОДЛИВАЊУ

Ласло Нађ

Департман за геотехнику, Технички универзитет у Будимпешти, Мађарска

Резиме

За проучавање дистрибуције величине честица материјала који се излива током одливања, користили смо 20 узорака који потичу са различитих места на рекама Дунав и Тиса. Градијентне карактеристике тих узорака проучене су на основу одабраних величина честица и униформности градијената. На основу тих проучавања било је могуће идентификовати која величина честице ће се вероватно излити и установити како да се окарактерису ти челићи честица. На основу криве о дистрибуцији величине честица било је могуће дефинисати границе зоне подложне одливању.

Границе зоне грануларних врста земљишта које су се навлажиле због земљотреса и границе зоне земљишта изливеног током одливања, врло су сличне. Таја очита кореспонденција већ раније је довела до хипотетичког питања да ли се одливање које се дешава током високих поплава може симулирати обликом који личи на појаву влажења површине током земљотреса, јер се у оба случаја формира купа кроз чији отвор вода стално истиче, повлачаћи чврсте честице.

КЉУЧНЕ РЕЧИ: дистрибуција величине честица, коефицијент униформности, одливање, хидраулички поремећај

128
This version of Instruction to Authors is valid starting from the year 2012 and the journal number 122

1. General remarks
1.1. Matica Srpska Proceedings for Natural Sciences (short title: Proc. Sci. Matica Srpska) publishes manuscripts and review articles as well as brief communications from all scientific fields as referred to in the title of the journal. Review articles are published only when solicited by the editorial board of the journal. Manuscripts that have already been published in extenso or in parts or have been submitted for publication to other journal will not be accepted. The journal issues two numbers per year.

1.2. The manuscripts should be written in correct English language regarding the grammar and style. The manuscripts should be submitted electronically as a separate file to zmspn@maticasrpska.org.rs and enclosed with the author’s written consent for the publishing of the manuscript.

1.3. Upon the reception of the manuscript, the author shall be assigned with a manuscript code, which has to be referred to in any further correspondence. The authors will be notified about the manuscript reception within seven days and about the reviewers’ opinion within two months from submission. All submitted manuscripts are reviewed and proofread.

2. Planning and preparing of the manuscript
2.1. Type the manuscripts electronically on A4 (21 x 29.5 cm) format with 2.5 cm margins, first line indent, and 1.5 line spacing. When writing the text, the authors should use Times New Roman size 12 font and when writing the abstract, key words, summary, and footnotes use font size 10.

2.2. First name, middle initial and last name should be given for all authors of the manuscript and their institutional affiliations, institution name, and mailing address. In complex organizations, a full hierarchy should be mentioned (e.g. University of Novi Sad, Faculty of Sciences – Department of Biology and Ecology). The institution of employment of each author should be stated below the author’s name. The position and academic degrees should not be cited. If there is more than one author, indicate separately institutional affiliation for each of the authors. Put the name and mailing address (postal or e-mail address) of the author responsible for correspondence at the bottom of the first page. If there is more than one author, write the address of only one author, usually the first one.
2.3. Structure the text of the original articles into Abstract, Key Words, Introduction, Material or Methods, or Material and Methods, Results or Results and Discussion, Discussion, Conclusion, References, Summary and Key Words in Serbian language, and Acknowledgement (if there is one). Original articles should not be longer than 10 pages, including the references, tables, legends, and figures.

2.4. Titles should be informative and not longer than 10 words. It is in the best interest of the authors and the journal to use words in titles suitable for indexing and electronic searching of the article.

2.5. The authors should submit the title of the article with last name and the initials of the first author.

(if the article has more than one author, et al. should be used for other authors) and running title of not more than five words.

2.6. List up to 10 key words using words and phrases that describe the content of the article in the best way and that allow indexing and electronic searching of the paper. List the key words alphabetically and divided by commas.

2.7. The Abstract in English language and Summary in Serbian language should be a short and informative presentation of the article. Depending on the length of the article, the Abstract may have from 100 to 250 words. Summary written in Serbian language can be 1/10 length of the article and should contain the title of the article, first, middle initial, and last names of the authors, authors’ institutional affiliation and address, and key words.

2.8. Write the information about financial support, advices, and other forms of assistance, if necessary, at the end of the article under the Acknowledgement. Financial support acknowledgement should contain the name and the number of the project, i.e. the name of the program from which the article originated, and the name of the institution that provided the financial support. In case of other forms of assistance the author should submit the first name, middle initial, last name, institutional affiliation, and the address of the person providing the assistance or the full name and the address of the assisting institution.

3. Structure the Review articles in Abstract, Key Words, Text of the manuscript, Conclusion, and References; submit Summary and Key Words in Serbian language. Review articles should not be longer than 12 pages, including references, tables, legends, and figures.

4. Write brief communication according to the instructions for original articles but not be longer than five pages.

5. References

5.1. List the References alphabetically. Examples:

(a) Articles from journals: Last name CD, Last name CD (2009): Title of the article. Title of the journal (abbreviated form) 135: 122-129.

(b) Chapters in the book: Last name ED, Last name AS, Last name IP (2011): Title of the pertinent part from the book. In: Last name CA, last name IF (eds.), Title of the book, Vol.4, Publisher, City
(c) Books: Last name VG, Last name CS (2009): Title of the cited book. Publisher, City
(d) Dissertations: Last name VA (2009): Title of the thesis. Doctoral dissertation, University, City
(e) Unpublished articles: designation “in press” should be used only for papers accepted for publishing. Unpublished articles should be cited in the same way as published articles except that instead of journal volume and page numbers should write “in press” information.
(f) Articles reported at scientific meetings and published in extenso or in a summary form: Last name FR (2011): Proceedings, Name of the meeting, Meeting organizers, Venue, Country, 24-29
(g) World Wide Web Sites and other electronic sources: Author’s last name, Author’s initial. (Date of publication or revision). Title, In: source in Italics, Date of access, Available from: <Available URL>. Use n.d. (no date) where no publication date is available. Where no author is available, transfer the organization behind the website or the title to the author space.

5.2. References in the text should include author’s last name and the year of publishing. When there are two authors both should be cited, but in case of three or more authors, cite the first author only and follow with et al.

5.3. If two or more articles of the same author or authors published in the same year are cited, designate the publishing years with letters a, b, c, etc., both in text and reference list.

5.4. The names of the periodicals should be abbreviated according the instructions in the Bibliographic Guide for Authors and Editors (BIOSIS, Chemical Abstracts Service, and Engineering Index, Inc.).

5.5. Do not translate references to the language of the article. Write the names of cited national periodicals in their original, shortened form. For example, for the reference in Serbian language, put (Sr) at the end of the reference.

6. Units, names, abbreviations, and formulas
6.1. SI units of measurement (Système international d’unités) should be used but when necessary use other officially accepted units.
6.2. Write the names of living organisms using Italics font style.
6.3. Abbreviated form of a term should be put into parenthesis after the full name of the term first time it appears in the text.
6.4. Chemical formulas and complex equations should be drawn and prepared for photographic reproduction.

7. Figures
7.1. Authors may use black-and-white photographs and good quality drawings.
7.2. A caption with the explanation should be put below each figure.

8. Tables
8.1. Type tables on separate sheet of papers and enclosed them at the end of the manuscript.
8.2. Number the tables using Arabic numerals.
8.3. Above each table, write a capture with table explanation.
8.4. On the left margin, indicate the place of the tables in the text.

9. Electronic copy of the article
9.1. After the acceptance of the article, send a CD with final version of the manuscript and a printed copy to facilitate technical processing of the text. Articles should be written in Microsoft Word format and sent to the Editorial office of the *Matica Srpska Proceedings for Natural Sciences, Matica Srpska*, Matica Srpska Street, 21000 Novi Sad (Uredništvo Zbornika Matice srpske za prirodnе nauke, Matica srpska ul., 21000 Novi Sad).

9.2. Before printing, the manuscripts shall be sent to the authors for the approval of final version. Corrections of the text prepared for printing should be restricted to misspelling and printing errors as much as possible. For major changes of the text, a fee will be charged. Corrected manuscript should be returned to the Editorial office as soon as possible.

9.3. Authors are entitled to ten reprints.
УПУТСТВО АУТОРИМА*
(www.maticasrpska.org.rs)

1. Опште напомене

1.2. Прихватају се рукописи писани на енглеском језику. Језик мора бити исправан у погледу граматике и стила. Рукопис се доставља електронском поштом као посебан докуменат на адресу: zmspn@maticasrpska.org.rs, уз обавезну потписану изјаву аутора у вези са пријавом рада за штампу.

1.3. По примању рукописа, аутор ће добити шифру свог рада, коју треба увек наводити у даљој преписци. Уредништво ће обавести аутора о приспећу рукописа у року од седам дана, а о мишљењу рецензената у року од два месеца од пријема. Сваки рад се рецензира и лекторише.

2. Припрема рукописа
2.1. Текст рада пише се електронски на страни А4 (21x29,5 cm), с маргинама од 2,5 cm, увлачењем првог реда новог пасуса, и размаком међу редовима 1,5. Текст треба писати у фонту Times New Roman словима величине 12 а сажетак, кључне речи, резиме и подножне напомене словима величине 10 pt.

2.2. Наводе се име, средње слово и презиме свих аутора рада као и назив установе (без скраћеница) у којој су аутори запослени, заједно са пуном поштанском адресом. У сложеним организацијама наводи се укупна хијерархија (на пример: Универзитет у Новом Саду, Природно-математички факултет – Департман за биологију и екологију). Место запослења наводи се непосредно испод имена аутора. Функције и звања аутора се не наводе. Ако је аутора више, мора се, посебним ознакама, назначити из које од наведених установа потиче сваки од наведених аутора. Контакт адреса аутора (поштанска или електронска) даје се у напомени при дну прве странице чланка. Ако је аутора више, даје се само адреса једног, обично првог аутора.

2.3. Рукопис оригинала научног рада треба поделити на: Сажетак, Кључне речи, Увод, Материјал или Метод или Материјал и метод, Ре-

* Ово упутство важи од 2012. године од броја часописа 122.
зултати или Резултати и дискусија, Дискусија, Закључак, Литература, Сажетак и Кључне речи на српском језику и Захвалност (уколико за то постоји потреба). Оригинални научни радови не смеју бити дужи од 10 страна, укључујући литературу, табеле, легенде и слике.

2.4. Наслов рада треба да буду информативан, али не дужи од десет речи. У интересу је часописа и аутора да се користе речи прикладне за индексирање и претраживање.

2.5. Аутори треба да доставе и текући наслов који треба да садржи презиме и иницијале првог аутора (ако је аутора више, преостали се означавају са “et al.”) и наслов рада у скраћеном облику, не више од пет речи.

2.6. За кључне речи треба користити термине или фразе које најбоље описују садржај чланка за потребе индексирања и претраживања. Број кључних речи не може бити већи од 10. Треба их навести абецедним редом и одвојити зарезима.

2.7. Апстракт на енглеском и резиме на српском треба да представљају кратак информативни приказ чланка. Апстракт у зависности од дужине чланка треба да има од 100 до 250 речи. Резиме на српском језику може бити до 1/10 дужине чланка и треба да садржи наслов рада, имена аутора, средње слово и презимена, назив и место у којима су аутори захвалности.

2.8. Податке о финансијској помоћи, саветима и другим врстама помоћи, уколико за то постоји потреба, треба навести на крају рада, под насловом Захвалност. У захвалности треба навести назив и број пројекта, односно назив програма у оквиру којег је чланак настао, као и назив институције која је финансирала пројекат или програм. У случају других видова помоћи треба навести име, средње слово и презимена, у после наслов рада, и место у којима су аутори захвалности.

3. Прегледни рад треба да садржи: Апстракт, Кључне речи, Закључак, Литературу, као и Резиме и Кључне речи на српском. Прегледни радови не смеју бити дужи од 12 страна, укључујући литературу, табеле, легенде и слике.

4. Кратко саштрешење се пише по упутствима за оригинал научни рад, али не сме да буде дуже од 5 страна.

5. Литература
5.1. Литературне наводе треба сложити абецедним редом на следећи начин:

d. Необјављени радови: Навод „у штампи” треба да се односи само на радове прихваћене за штампу. Необјављени радови: цитирати као да се ради о објављеном раду осим што се уместо волумена часописа и броја страна наводи „у штампи”.

e. Електронски извори:

World Wide Web Sites and Other Electronic Sources
Author last name, Author initial. (Date of publication or revision). Title, In: source in Italics, Date of access, Available from: <Available URL>

Use n.d. (no date) where no publication date is available.
Where no author is available, transfer the organisation behind the website, or the title, to the author space.

5.2. Референце у тексту треба да укључу презиме аутора и годину издања. Ако има два аутора, треба навести обојицу, а у случају три или више аутора треба навести првог аутора и назначити “et al.”.

5.3. Ако се наводе два или више радова истог или истих аутора, објављених у истој години, потребно је у тексту и списку литературе ставити а, б, ц, итд. иза године објављивања.

5.4. Имена часописа треба скраћивати према “Bibliographic Guide for Authors and Editors” (BIOSIS, Chemical Abstracts Service and Engineering Index, Inc.,).

5.5. Референце се не преводе на језик рада. Наслови цитираних домаћих часописа дају се у оригиналном, скраћеном облику. Ако је референца нпр. на српском језику на крају се стави (Sr).

6. Јединице, имена, скраћенице и формуле
6.1. Треба користити SI ознаке за јединице (SI Systeme International d’Un.); изузетно се могу користити и друге званично прихваћене јединице.

6.2. Називе живих организама на латинском треба писати италиком.

6.3. При коришћењу скраћеница у тексту, пун термин треба навести приликом првог спомињања, а скраћеницу додати у загради.

6.4. Хемијске структурне формуле и сложене једначине треба нацртати и припремити за фотографску репродукцију.

7. Илустрације
7.1. За илустрације могу се користити црно беле фотографије и цртежи доброг квалитета.
7.2. Свака илустрација треба да има текст (легенду) који објашњава садржај прилога (испод слике).

8. Табеле
8.1. Табеле треба куцати на одвојеним страницама и приложити их на крају рада.
8.2. Табеле се означавају арапским бројевима.
8.3. Свака табела треба да почне насловом који објашњава њен садржај (изnad табеле).
8.4. Места табела у тексту треба означити на левој маргини.

9. Копија рада у електронској форми
9.1. После прихватања рада потребно је доставити CD са коначном верзијом рада. Приложити и једну копију одштампаног рада ради лакше техничке обраде. Рукопис треба слати на адресу: Уредништво Зборника Матице српске за природне науке, Матица српска, Ул. Матице српске, 21000 Нови Сад. Рукописи се шаљу у Word формату.
9.2. Пре уласка рада у штампу ауторима се доставља рукопис за коначну ревизију. Исправљање текста припремљеног за штампу треба ограничити на штампарске грешке. Значајне промене текста ће се наплаћивати. Кориговани текст треба вратити Уредништву у најкраћем могућем року.
9.3. Аутори добијају 10 бесплатних примерака сепарата.
THE 5th INTERNATIONAL SCIENTIFIC MEETING
MYCOLOGY, MYCOTOXICOLOGY AND MYCOSES

Organizer | Matica Srpska, Department of Natural Sciences
Venue | Novi Sad, Matica Srpska, Matica Srpska St., No. 1
Date | April 17th-19th, 2013
Topics | I Mycology
 | II Mycotoxins in food and feed
 | III Human and animal mycotoxicosis
 | IV Human, animal and plant mycosis
Participation
 | ▪ Plenary lectures
 | ▪ Oral presentations
 | ▪ Posters
 | ▪ Company presentations: producers/distributors of laboratory
 equipments, chemicals, microbiological media and other commodities
 for microbiological/mycotoxicological laboratories.

Title and abstract submission deadline | November 15th, 2012
Manuscript | prepared for press in accordance with Matica Srpska Proceedings for
 Natural Sciences instructions, submission deadline: December 15th, 2012
Company presentation submission deadline | February 28th, 2013
Application and manuscripts should be sent to the address | Matica Srpska, 21000 Novi Sad, Matica Srpska St. № 1
| The 5th international scientific meeting Mycology, mycotoxicology and mycoses
| E-mail: mznrc@maticasrpska.org.rs

Revised and edited manuscripts will be published in journal MATICA SRPSKA PROCEEDINGS FOR NATURAL SCIENCES. The full text will be available on Matica Srpska web site (http://www.maticasrpska.org.rs/casoris/index-eng.html) and in following databases: SCIndex (Serbian Citation Index, http://scindex.nb.rs/) and EBSCO (Academic Search Complete, www.ebscohost.com), while abstract will be available in Aris (FAO) database (www.fao.org).

Registration fee
▪ 100 €
▪ 50 € for students of doctoral studies
▪ Participation for pensioners is free of charge.
▪ (for Serbian participants fee should be paid in dinars, according to the exchange rate on the date of payment). Registration fee includes mentioned Proceedings, snack during the meeting, cocktail breaks and gala dinner.

Informations
Phone: 381 21 6615 798; e-mail: mznrc@maticasrpska.org.rs
(Matica Srpska, Mirjana Znić)
Phone: 381 21 485 37 15; e-mail: skrinjarm@uns.ac.rs
(Faculty of Technology, prof. dr Marija Škrinjar)
Phone: 381 21 485 36 99; e-mail: sosov@uns.ac.rs
(Faculty of Technology, dipl. ing. Vladislava Šošo)
THE 5th INTERNATIONAL SCIENTIFIC MEETING
MYCOLOGY, MYCOTOXICOLOGY AND MYCOSES

Novi Sad, April 17-19, 2013.

Application for Participation
(to be filled in capital letters)

<table>
<thead>
<tr>
<th>First name and family name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of work organization</td>
<td></td>
</tr>
<tr>
<td>Address of work organization</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Fax</td>
<td></td>
</tr>
<tr>
<td>E-mail</td>
<td></td>
</tr>
<tr>
<td>Title of the paper</td>
<td></td>
</tr>
<tr>
<td>I want to participate</td>
<td></td>
</tr>
<tr>
<td>(please mark)</td>
<td></td>
</tr>
<tr>
<td>With a paper</td>
<td></td>
</tr>
<tr>
<td>oral presentation</td>
<td></td>
</tr>
<tr>
<td>poster</td>
<td></td>
</tr>
<tr>
<td>without a paper</td>
<td></td>
</tr>
<tr>
<td>with the presentation of a firm</td>
<td></td>
</tr>
<tr>
<td>Topics (please mark)</td>
<td>I II III IV</td>
</tr>
</tbody>
</table>
Proceedings for Natural Sciences published by Matica Srpska
Published twice a year
Editorial and publishing office: Novi Sad, Ul. Matice Srpske 1
21000 Novi Sad, Serbia
Phone: +381-21/420-199
The editors of the Matica Srpska Proceedings for Natural Sciences
Completed the selection for Issue 123 (2/2012) on May 31, 2012
Editorial Staff Secretary: Vladimir M. Nikolić
Managing editor: Dr. Slavka Gajin
English text proof-reader: Stanka Matejašev and Vera Vasilić
Technical design: Vukica Tucakov
Published in December 2012
Computer set: Vladimir Vatić, GRAFIT, Novi Sad
Printed by: BUDUĆNOST, Novi Sad

Publication of this volume was supported by the Ministry of Education Science and Technological Development of Republic of Serbia and the Provincial Secretariat for Science and Technological Development of the Autonomous Province of Vojvodina

CIP – Каталогизација у публикацији
Библиотека Матице српске, Нови Сад
5/6(082)

Два пута годишње. – Наставак публикације: Зборник за природне науке. – Текст на енг. језику, резимен на енг. и на срп. језику.
ISSN 0352-4906
COBISS.SR-ID 5845250